• Title/Summary/Keyword: Shortest Path Algorithm

Search Result 438, Processing Time 0.033 seconds

Path Planning for Autonomous Mobile Robots by Modified Global DWA (수정된 전역 DWA에 의한 자율이동로봇의 경로계획)

  • Yoon, Hee-Sang;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.389-397
    • /
    • 2011
  • The global dynamic window approach (DWA) is widely used to generate the shortest path of mobile robots considering obstacles and kinematic constraints. However, the dynamic constraints of robots should be considered to generate the minimum-time path. We propose a modified global DWA considering the dynamic constraints of robots. The reference path is generated using A* algorithm and smoothed by cardinal spline function. The trajectory is then generated to follows the reference path in the minimum time considering the robot dynamics. Finally, the local path is generated using the dynamic window which includes additional terms of speed and orientation. Simulation and experimental results are presented to verify the performance of the proposed method.

A Polynomial Algorithm for the Minimum Spanning Arborescence in Transportation Networks with Bitype Arc Costs (이중비용 네트워크에서의 최소비용 극대방향 나무 해법)

  • Sim, Hyun-Taek;Park, Soon-Dal
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.16 no.1
    • /
    • pp.17-25
    • /
    • 1990
  • Most of the least cost transportation network design problems are frequently formulated as the minimum spanning arborescence problems in directed networks with bitype are costs. These costs are classified whether the arc is included in the path from the root to a specified node over a given spanning arborescence. We prove that this problem is NP-hard, and develop a polynomial time algorithm for acyclic networks. The probelm in acyclic networks is initially formulated as 0-1 integer programming. Next, we prove that the 0-1 relaxed linear programming has an integral optimum solution by complementary slackness conditions. In this paper, we present an $O(n^2)$ algorithm based on a shortest path algorithm.

  • PDF

Layer Segmentation of Retinal OCT Images using Deep Convolutional Encoder-Decoder Network (딥 컨볼루셔널 인코더-디코더 네트워크를 이용한 망막 OCT 영상의 층 분할)

  • Kwon, Oh-Heum;Song, Min-Gyu;Song, Ha-Joo;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1269-1279
    • /
    • 2019
  • In medical image analysis, segmentation is considered as a vital process since it partitions an image into coherent parts and extracts interesting objects from the image. In this paper, we consider automatic segmentations of OCT retinal images to find six layer boundaries using convolutional neural networks. Segmenting retinal images by layer boundaries is very important in diagnosing and predicting progress of eye diseases including diabetic retinopathy, glaucoma, and AMD (age-related macular degeneration). We applied well-known CNN architecture for general image segmentation, called Segnet, U-net, and CNN-S into this problem. We also proposed a shortest path-based algorithm for finding the layer boundaries from the outputs of Segnet and U-net. We analysed their performance on public OCT image data set. The experimental results show that the Segnet combined with the proposed shortest path-based boundary finding algorithm outperforms other two networks.

Energy Optimized Transmission Strategy in CDMA Reverse Link: Graph Theoretic Approach (역방향 CDMA 시스템에서 에너지 최적화된 전송기법: 그래프 이론적 접근)

  • Oh, Changyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.3-9
    • /
    • 2015
  • We investigate rate scheduling and power allocation problem for a delay constrained CDMA systems. Specifically, we determine an energy efficient scheduling policy, while each user maintains the short term (n time slots) average throughput. We consider a multirate CDMA system where multirate is achieved by multiple codes. Each code can be interpreted as a virtual user. The aim is to schedule the virtual users into each time slot, such that the sum of transmit energy in n time slots is minimized. We then show that the total energy minimization problem can be solved by a shortest path algorithm. We compare the performance of the optimum scheduling with that of TDMA-type scheduling.

A Study on Path Planning Algorithm of a Mobile Robot for Obstacle Avoidance using Optimal Design Method

  • Tran, Anh-Kim;Suh, Jin-Ho;Kim, Kwang-Ju;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.168-173
    • /
    • 2003
  • In this paper, we will present a deeper look on optimal design methods that are related to path-planning for a mobile robot. To control the motion of a mobile robot in a clustered environment, it's necessary to know a suitable trajectory assuming certain start and goal point. Up to now, there are many literatures that concern optimal path planning for an obstacle avoided mobile robot. Among those literatures, we have chosen 2 novel methods for our further analysis. The first approach [4] is based on HJB(Hamilton-Jacobi-Bellman) equation whose solution is the return-function that helps to generate a shortest path to the goal. The later [5] is called polynomial-path-planning approach, in this method, a shortest polynomial-shape path would become a solution if it was a collision-free path. The camera network plays the role as sensors to generate updated map which locates the static and dynamic objects in the space. Therefore, the exhibition of both path planning and dynamic obstacle avoidance by the updated map would be accomplished simultaneously. As we mentioned before, our research will include the motion control of a true mobile robot on those optimal planned paths which were generated by above algorithms. Base on the kinematic and dynamic simulation results, we can realize the affection of moving speed to the stable of motion on each generated path. Also, we can verify the time-optimal trajectory through velocity tuning. To simplify for our analysis, we assumed the obstacles are cylindrical circular objects with the same size.

  • PDF

A Study on the Solution Method of Maximum Origin-Destination Flow Path in an Acyclic Network using Branch and Bound Method (분지한계기법을 이용한 무환네트위크에서 최대물동량경로의 해법에 관한 연구)

  • 성기석;임준목
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.31-41
    • /
    • 1995
  • The maximum Origin-Destination Flow Path Problem (MODFP) in an Acyclic Network has known as NP-hard. K. S. Sung has suggested on Optimal Algorithm for MODFP based on the Pseudo flo or arc and the K-th shortest path algorithm. When we try to solve MODFP problem by general Branch and Bound Method (BBM), the upper and lower bounds of subproblems are so weak that the BBM become very inefficient. Here we utilized the Pseudo flow of arc' for the tight bounds of subproblems so that it can produce an efficient BBM for MODFP problem.

  • PDF

A Study on Heuristic Search in the Path Finding Algorithm by CAD (CAD에 의한 경로 발견 알고리즘에 있어서 발견적 탐석에 관한 연구)

  • 이천희;박병철
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.1-6
    • /
    • 1984
  • In this paper, many kinds of heuristic functions were discussed. It's important factor in the path finding algorithm to find an accurate estimator of distance from the goal. Any space for which an accurate estimator exists is a domain of its problem being solves. Only domains with inaccurate estimators are interesting, so this paper deals with these cases for which the efficient use of heuristic information is necessary, It has been productive to use a computational approach to the shortest path problem.

  • PDF

Optimal Path Planning Using Critical Points

  • Lee, Jin-Sun;Choi, Chang-Hyuk;Song, Jae-Bok;Chung, Woo-Jin;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.131.4-131
    • /
    • 2001
  • A lot of path planning algorithms have been developed to find the collision-free path with minimum cost. But most of them require complicated computations. In this paper, a thinning method, which is one of the image processing schemes, was adopted to simplify the path planning procedure. In addition, critical points are used to find the shortest-distance path among all possible paths from the start to the goal point. Since the critical points contain the information on the neighboring paths, a new path can be quickly obtained on the map even when the start and goal points change. To investigate the validity of the proposed algorithm, various simulations have been performed for the environment where the obstacles with arbitrary shapes exist. It is shown that the optimal paths can be found with relative easiness.

  • PDF

A Reliable Distributed Shortest Path Routing Algorithm for Computer Networks (컴퓨터 네트워크를 위한 신뢰성 있는 분산 최단경로 설정 알고리즘)

  • 박성우;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.24-34
    • /
    • 1994
  • In most computer networks, each node needs to have correct routing information for finding shortest paths to forward data packets. In a distributed environment, however, it is very difficult to keep consistent routing information throughout the whole network at all times. The presence of out-dated routing information can cause loop-forming which in turn causes the significant degradation of network performance. In this paper, a new class of routing algorithm for loop detection and resolution is discussed. The proposed algorithm is based on the distributed Bellman-Ford algorithm which is popularly adopted for routing in computer network. The proposed algorithm detects and resolves all kinds( two-node and multi-node) of loop in a distributed environment within finite time while maintaining the simplicity of the distributed Bellman-Ford algorithm.

  • PDF

Linear Algorithm for Finding a Shortest Watchman Route with Minimum Links in Monotone Polygons (단조다각형에서 최소 개수의 링크를 가진 최단 경비원경로를 구하는 선형 알고리즘)

  • Ryu, Sang-Ryul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1437-1445
    • /
    • 1999
  • n개의 꼭지점을 가진 단조(monotone) 다각형은 2차원 평면상의 임의의 선분에 단조 적인 2개의 체인으로 구성된다. 단조 다각형의 내부를 경로 상에서 모두 감시할 수 있는 최소 링크를 가진 경비원 경로(watchman route with minimum links)는 최소 개수의 선분으로 구성된 경로로서 하나 이상 존재할 수 있다. 본 논문에서는 단조 다각형의 최소 링크를 가진 경비원 경로들 중에서 최단 경비원 경로를 구하는 O(n) 시간의 알고리즘을 제시한다.Abstract A monotone polygon consists of n vertices and is a union of two monotone chains with respect to some line segment in the plane. A watchman route with minimum-links is a polygonal path such that each point in the interior of the polygon can be visible from at least one point along the route. There may be more than one watchman route with minimum links for given monotone polygon. In this paper, we present an algorithm with O(n) time that finds a shortest watchman route among the watchman routes with minimum links in a monotone polygon.