• Title/Summary/Keyword: Shortest Path

Search Result 709, Processing Time 0.025 seconds

Compare with Shotest Path Algorithm in Navigation System (네비게이션 시스템에서의 최단경로 탐색 기법 비교)

  • Park, Seung-Yong;Yu, Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.27-28
    • /
    • 2010
  • Finding shortest path technique running time differs depending on applying of the algorithm and data, and also used a lot of difference in effectiveness depending on the environment occurs. Therefore, the algorithm and environment based on this study, the relationship between optimal solutions and compare running time.

  • PDF

A Path Planning to Maximize Survivability for Unmanned Aerial Vehicle based on 3-dimensional Environment (3차원 환경 기반 무인 항공기 생존성 극대화를 위한 이동 경로 계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.304-313
    • /
    • 2011
  • An Unmanned Aerial Vehicle(UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are currently employed in many military missions(surveillance, reconnaissance, communication relay, targeting, strike etc.) and a number of civilian applications(communication service, broadcast service, traffic control support, monitoring, measurement etc.). For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is the path planning to maximize survivability for UAV based on 3-dimensional environment. A mathematical programming model is suggested by using MRPP(Most Reliable Path Problem) and solved by transforming MRPP into SPP(Shortest Path Problem). This study also suggests a $A^*PS$ algorithm based on 3-dimensional environment to UAV's path planning. According to comparison result of the suggested algorithm and SPP algorithms (Dijkstra, $A^*$ algorithm), the suggested algorithm gives better solution than SPP algorithms.

A Selection of Path Planning Algorithm to Maximize Survivability for Unmanned Aerial Vehicle (무인 항공기 생존성 극대화를 위한 이동 경로 계획 알고리즘 선정)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.103-113
    • /
    • 2011
  • This research is to select a path planning algorithm to maximize survivability for Unmanned Aerial Vehicle(UAV). An UAV is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are currently employed in many military missions(surveillance, reconnaissance, communication relay, targeting, strike etc.) and a number of civilian applications(communication service, broadcast service, traffic control support, monitoring, measurement etc.). In this research, a mathematical programming model is suggested by using MRPP(Most Reliable Path Problem) and verified by using ILOG CPLEX. A path planning algorithm for UAV is selected by comparing of SPP(Shortest Path Problem) algorithms which transfer MRPP into SPP.

A Study on the Trajectory Control of a Autonomous Mobile Robot (자율이동로봇을 위한 경로제어에 관한 연구)

  • Cho, Sung-Bae;Park, Kyung-Hun;Lee, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2417-2419
    • /
    • 2001
  • A path planning is one of the main subjects in a mobile robot. It is divided into two parts. One is a global path planning and another is a local path planning. This paper, using the formal two methods, presents that the mobile robot moves to multi-targets with avoiding unknown obstacles. For the shortest time and the lowest cost, the mobile robot has to find a optimal path between targets. To find a optimal global path, we used GA(Genetic Algorithm) that has advantage of optimization. After finding the global path, the mobile robot has to move toward targets without a collision. FLC(Fuzzy Logic Controller) is used for local path planning. FLC decides where and how faster the mobile robot moves. The validity of the study that searches the shortest global path using GA in multi targets and moves to targets without a collision using FLC, is verified by simulations.

  • PDF

Path Planning Based on Spline D* for Mobile-robot (이동로봇을 위한 스플라인 D* 기반의 경로 계획)

  • Ryu, Hee-Rack;Choi, Yun-Won;Saitov-Sinl, Dilshat;Lee, Suk-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.92-98
    • /
    • 2014
  • This paper proposes a hermite spline based D* algorithm for effective path planning of mobile robot to improve the detecting speed. In conventional path planning research, a robot is supposed to pass through predetermined centers of grid partitions of area. However it doesn't guarantee the optimal path during its navigation. In addition, a robot is hard to avoid obstacles effectively. The proposed algorithm in this paper makes use of stochastic characteristics of nonholonomic mobile robot and estimation of shortest path to curvature movement of the robot. The performance evaluation of the improved spline D* algorithm performed through simulation shows its effectiveness. Moreover, the experiment verifies that a robot can find the shortest path by building the curve paths while it is moving on the path in spline.

Fault free Shortest Path routing on the de Bruijin network (드브르젼 네트워크에서 고장 노드를 포함하지 않는 최단 경로 라우팅)

  • Ngoc Nguyen Chi;Nhat Vo Dinh Minh;Zhung Yonil;Lee Sungyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11B
    • /
    • pp.946-955
    • /
    • 2004
  • It is shown that the do Bruijn graph (dBG) can be used as an architecture for interconnection network and a suitable structure for parallel computation. Recent works have classified dBG based routing algorithms into shortest path routing and fault tolerant routing but investigation into fault free shortest path (FFSP) on dBG has been non-existent. In addition, as the size of the network increase, more faults are to be expected and therefore shortest path dBG algorithms in fault free mode may not be suitable routing algorithms for real interconnection networks, which contain several failures. Furthermore, long fault free path may lead to high traffic, high delay time and low throughput. In this paper we investigate routing algorithms in the condition of existing failure, based on the Bidirectional do Bruijn graph (BdBG). Two FFSP routing algorithms are proposed. Then, the performances of the two algorithms are analyzed in terms of mean path lengths and discrete set mean sizes. Our study shows that the proposed algorithms can be one of the candidates for routing in real interconnection networks based on dBG.

Development of a n-path algorithm for providing travel information in general road network (일반가로망에서 교통정보제공을 위한 n-path 알고리듬의 개발)

  • Lim, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.135-146
    • /
    • 2004
  • For improving the effectiveness of travel information, some rational paths are needed to provide them to users driving in real road network. To meet it, k-shortest path algorithms have been used in general. Although the k-shortest path algorithm can provide several alternative paths, it has inherent limit of heavy overlapping among derived paths, which nay lead to incorrect travel information to the users. In case of considering the network consisting of several turn prohibitions popularly adopted in real world network, it makes difficult for the traditional network optimization technique to deal with. Banned and penalized turns are not described appropriately for in the standard node/link method of network definition with intersections represented by nodes only. Such problem could be solved by expansion technique adding extra links and nodes to the network for describing turn penalties, but this method could not apply to large networks as well as dynamic case due to its overwhelming additional works. This paper proposes a link-based shortest path algorithm for the travel information in real road network where exists turn prohibitions. It enables to provide efficient alternative paths under consideration of overlaps among paths. The algorithm builds each path based on the degree of overlapping between each path and stops building new path when the degree of overlapping ratio exceeds its criterion. Because proposed algorithm builds the shortest path based on the link-end cost instead or node cost and constructs path between origin and destination by link connection, the network expansion does not require. Thus it is possible to save the time or network modification and of computer running. Some numerical examples are used for test of the model proposed in the paper.

Implementation of Systolic Array for the Single-Source Shortest Path Problem

  • Lee, Jae-Jin;Park, Jeong-Pil;Hwang, In-Jae;Song, Gi-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.361-364
    • /
    • 2002
  • Shortest path problem belongs to the combinatorial optimization problem and plays an important role in the field of computer aided design. It can either be directly applied as in the case of routing or serves as a important subroutine in more complex problems. In this paper, a systolic array for the SSSP(single-source shortest path problem) was derived. The array was modeled and simulated in RTL level using VHDL, then synthesized to a schematic and finally implemented to a layout using the cell library based on 0.35 $\mu\textrm{m}$ CMOS 1-poly 4-metal CMOS technology.

  • PDF

Shortest Path Problem in a Type-2 Fuzzy Weighted Graph (타입 2-퍼지 가중치 그래프에서 최단경로 문제)

  • 이승수;이광형
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.528-531
    • /
    • 2001
  • Finding a shortest path on a graph is a fundamental problem in the area of graph theory. In an application where we cannot exactly determine the weights of edges fuzzy weights can be used instead of crisp weights. and Type-2 fuzzy weight will be more suitable of this uncertainty varies under some conditions. In this paper, shortest path problem in type-1 fuzzy weighted graphs is extended for type 2 fuzzy weighted graphes. A solution is also given based on possibility theory and extension principle.

  • PDF

A Study on Area Division Method to use the Hour-based Vehicle Speed Information (시간단위 차량통행 속도정보의 활용을 위한 구역분할 방법의 연구)

  • Park, Sung-Mee;Moon, Gee-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.201-208
    • /
    • 2010
  • This research is about developing an efficient solution procedure for the vehicle routing problem under varying vehicle moving speeds for hour-based time interval. Different moving speeds for every hour is too difficult condition to solve for this type of combinatorial optimization problem. A methodology to divide the 12 hour based time interval offered by government into 5 different time intervals and then divide delivery area into 12 small divisions first and then re-organizing them into 5 groups. Then vehicle moving speeds are no longer varying in each of the 5 divisions. Therefore, a typical TSP solution procedure may be applied to find the shortest path for all 5 divisions and then connect the local shortest paths to form a delivery path for whole area. Developed solution procedures are explained in detail with 60 points example.