미세먼지에 대한 심각성이 사회적으로 대두됨에 따라 대중들은 미세먼지 예보에 대한 정보의 높은 신뢰성을 요구하고 있다. 이에 따라 다양한 신경망 알고리즘을 이용하여 미세먼지 예측을 위한 연구가 활발히 진행되고 있다. 본 논문에서는 미세먼지 예측을 위해 다양한 알고리즘으로 연구되고 있는 신경망 알고리즘들 중 대표적인 알고리즘들의 예측 성능 비교를 진행하였다. 신경망 알고리즘 중 DNN(deep neural network), RNN(recurrent neural network), LSTM(long short-term memory)을 이용하였으며, 하이퍼 파라미터 탐색을 이용하여 최적의 예측 모델을 설계하였다. 각 모델의 예측 성능 비교 분석 결과, 실제 값과 예측 값의 변화 추이는 전반적으로 좋은 성능을 보였다. RMSE와 정확도를 기준으로 한 분석에서는 DNN 예측 모델이 다른 예측 모델에 비해 예측 오차에 대한 안정성을 갖는 것을 확인하였다.
본 논문에서는 전기 자동차 배터리 팩 설계에서 성능 예측을 위해 전산유체해석 및 Long Short-Term Memory (LSTM)를 활용한다. 두 계산 모두의 예측이 상당한 유사성을 나타내며, 전산유체해석은 시스템 유체 역학을 고려한 상세한 물리 모델을 제공하고, LSTM은 시계열 데이터를 기반으로 한 딥러닝 모델로 효과적으로 패턴을 파악, 향후 온도 상승을 예측한다. 결과는 두 접근 모두가 효과적인 예측을 제공하며 향후 전기 자동차 배터리 팩 설계 및 최적화에서 종합적인 접근의 필요성을 강조한다. 특히, LSTM 기반 예측에 소요되는 시간은 계산 유체 역학의 약 25%로, 약 일주일 정도로 빠르게 확인 가능하다. 이는 현대 산업 환경에서 시간적 효율성이 중요한 측면을 강조하며, 계산 유체 역학의 상세한 물리 모델링과 LSTM의 빠른 예측 속도를 결합한 설계 방법론을 제안한다.
The aerodynamic force is a significant component that influences the stability and safety of structures. It has unstable properties and depends on computer precision, making its long-term prediction challenging. Accurately estimating the aerodynamic traits of structures is critical for structural design and vibration control. This paper establishes an unsteady aerodynamic time series prediction model using Long Short-Term Memory (LSTM) network. The unsteady aerodynamic force under varied Reynolds number and angles of attack is predicted by the LSTM model. The input of the model is the aerodynamic coefficients of the 1 to n sample points and output is the aerodynamic coefficients of the n+1 sample point. The model is predicted by interpolation and extrapolation utilizing Unsteady Reynolds-average Navier-Stokes (URANS) simulation data of flow around a circular cylinder, square cylinder and airfoil. The results illustrate that the trajectories of the LSTM prediction results and URANS outcomes are largely consistent with time. The mean relative error between the forecast results and the original results is less than 6%. Therefore, our technique has a prospective application in unsteady aerodynamic force prediction of structures and can give technical assistance for engineering applications.
IT 서비스 및 컴퓨팅 자원을 기반으로 인터넷 서비스를 제공하는 클라우드 컴퓨팅이 최근 큰 관심을 받고 있다. 그러나 클라우드 컴퓨팅 시스템에 저장되는 데이터는 암호화한 후 저장되어도 기밀 정보가 유출되는 문제점이 있다. 본 논문에서는 사용자가 클라우드 컴퓨팅 시스템에서 제공되는 데이터를 제 3자가 임의로 악용하는 것을 예방하기 위한 그룹 키 관리 프로토콜을 제안한다. 제안된 프로토콜은 임의의 사용자가 원격에서 클라우드 컴퓨팅 서버에 접근할 경우 서버에 존재하는 사용자 인증 데이터베이스내 사용자 정보를 일방향 해쉬 함수와 XOR 연산을 사용하여 사용자 인증을 제공받는다. 도한 사용자의 신분확인 및 권한을 연동하여 클라우드 컴퓨팅 시스템에 불법적으로 접근하는 사용자를 탐색함으로써 클라우드 컴퓨팅의 사용자 보안 문제를 해결하고 있다.
세계적 기후 위기와 저탄소 정책 이행으로 신재생 에너지에 관한 관심이 높아지고 이와 관련된 산업이 증가하고 있다. 이 중에서 태양 에너지는 고갈되지 않고 오염 물질이나 온실가스를 배출하지 않는 대표적인 친환경 에너지로 주목받고 있으며, 이에 따라 세계적으로 태양광 발전 시설 보급이 증가하고 있다. 하지만 태양광 발전은 지리, 날씨와 같은 환경의 영향을 받기 쉬우므로 안정적인 운영과 효율적인 관리를 위해 정확한 발전량 예측이 중요하다. 하지만 변동성이 큰 태양광 발전을 수학적 통계 기술로 정확한 발전량을 예측하는 것은 불가능하다. 이를 위해서 정확하고 효과적인 예측을 위해 딥러닝 기반의 기술에 관한 연구는 필수적이다. 또한, 기존의 딥러닝을 활용한 예측 방식은 장, 단기적인 예측을 나누어 수행하기 때문에 각각의 예측 결과를 얻기 위한 시간이 길어진다는 단점이 있다. 따라서, 본 연구에서는 시계열 특성을 가진 태양광 발전량 데이터를 사용하여 장단기 통합 예측을 수행하기 위해 순환 신경망의 다대다 구조를 활용한다. 그리고 이를 다양한 딥러닝 모델들에 적용하여 학습을 수행하고 각 모델의 결과를 비교·분석한다.
본 논문에서는 일부 소음 데이터만 알고 있을 때 결손된 데이터를 예측할 목적으로 수조에서 측정된 기포유동 소음 데이터와 수중 운동체 발사 소음 데이터를 시계열 기계학습 모델인 Long Short Term Memory(LSTM)에 적용해 보았다. 기포유동소음 데이터는 파이프에서 측정된 소음으로 기포소음, 유동소음, 유체기인소음이 혼합되어 있으며 유형별로 3가지로 분류할 수 있다. 수중 운동체 발사소음은 모형 발사튜브에서 수중 운동체가 사출될 때 발생하는 소음으로 순간소음이며 발사 이벤트마다 불규칙하게 변한다. 이러한 종류의 소음 생성을 위해서는 해석적인 모델보다는 데이터 기반 모델이 유용할 수 있다. 본 연구에서는 LSTM을 데이터 기반 모델을 만들었다. 모델에 영향을 주는 LSTM의 은닉유닛의 개수, 입력시퀸스의 개수, 데시메이션 인자에 따른 모델의 성능을 확인하고 최적의 LSTM 모델을 구성했다. 같은 유형은 새로운 데이터에 대해서도 잘 동작하는 것을 보였다.
To develop the prediction program for quality change of Citrus unshiu during marketing, we examined the quality characteristics of Citrus unshiu stored at experimental refrigerator set to 4, 8, 12 and 16$^{\circ}C$ for 2 months. According to the storage temperature the changes of quality characteristics were different respectively, but it was most severe during 16$^{\circ}C$ storage. Activation energy and Q10 value were 6683.16 cal/mol K and 1.53 respectively. The determination coefficient of regression equation of pH, acidity and vitamin C by surface response analysis were over 0.85. Using these regression equation, we developed the prediction program for the change of pH, acidity and vitamin C contents. The calculated values and experimental values of pH, acidity and vitamin C contents for short-term storage of Citrus unshiu were coincided well.
Comparison of different optimizer performance in photovoltaic power modeling using artificial neural deep learning techniques is described in this paper. Six different deep learning optimizers are tested for Long-Short-Term Memory networks in this study. The optimizers are namely Adam, Stochastic Gradient Descent, Root Mean Square Propagation, Adaptive Gradient, and some variants such as Adamax and Nadam. For comparing the optimization techniques, high and low fluctuated photovoltaic power output are examined and the power output is real data obtained from the site at Mokpo university. Using Python Keras version, we have developed the prediction program for the performance evaluation of the optimizations. The prediction error results of each optimizer in both high and low power cases shows that the Adam has better performance compared to the other optimizers.
This paper proposes a battery remaining useful life (RUL) prediction method using a deep learning-based EMD-CNN-LSTM hybrid method. The proposed method pre-processes capacity data by applying empirical mode decomposition (EMD) and predicts the remaining useful life using CNN-LSTM. CNN-LSTM is a hybrid method that combines convolution neural network (CNN), which analyzes spatial features, and long short term memory (LSTM), which is a deep learning technique that processes time series data analysis. The performance of the proposed remaining useful life prediction method is verified using the battery aging experiment data provided by the NASA Ames Prognostics Center of Excellence and shows higher accuracy than does the conventional method.
Journal of Korean Society for Atmospheric Environment
/
제24권E2호
/
pp.63-73
/
2008
In this study, neural network models (NNMs) were examined as alternatives to dispersion models in predicting the short-term $SO_2$ concentrations in a coastal area because the performances of dispersion models in coastal areas have been found to be unsatisfactory. The NNMs were constructed for various combinations of averaging time and prediction time in advance by using the historical data of meteorological parameters and $SO_2$ concentrations in 2002 in the coastal area of Boryeung, Korea. The NNMs were able to make much more accurate predictions of 1 hr $SO_2$ concentrations at ground level in the morning in coastal area than the atmospheric dispersion models such as fumigation models, ADMS3 and ISCST3 for identical conditions of atmospheric stability, area, and weather. Even when predictions of 24-h $SO_2$ concentrations were made 24 hours in advance, the predictions and measurements were in good accordance(correlation coefficient=0.65 for n=216). This accordance level could be improved by appropriate expansion of training parameters. Thus it may be concluded that the NNMs can be successfully used to predict short-term ground level concentrations averaged over time less than 24 hours even in complex terrain. The prediction performance of ANN models tends to improve as the prediction lagging time approaches the concentration averaging time, but to become worse as the lagging time departs from the averaging time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.