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Abstract

In this study, neural network models (NNMs) were examined as alternatives to dispersion models in
predicting the short-term SO, concentrations in a coastal area because the performances of dispersion models
in coastal areas have been found to be unsatisfactory. The NNMs were constructed for various combinations
of averaging time and prediction time in advance by using the historical data of meteorological parameters
and SO, concentrations in 2002 in the coastal area of Boryeung, Korea. The NNMs were able to make much
more accurate predictions of 1 hr SO, concentrations at ground level in the morning in coastal area than the
atmospheric dispersion models such as fumigation models, ADMS3 and ISCST3 for identical conditions of
atmospheric stability, area, and weather. Even when predictions of 24-h SO, concentrations were made 24
hours in advance, the predictions and measurements were in good accordance (correlation coefficient=0.65
for n=216). This accordance level could be improved by appropriate expansion of training parameters. Thus
it may be concluded that the NNMs can be successfully used to predict short-term ground level concentra-
tions averaged over time less than 24 hours even in complex terrain. The prediction performance of ANN
models tends to improve as the prediction lagging time approaches the concentration averaging time, but to
become worse as the lagging time departs from the averaging time.
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significant limitations in predicting the short-term air
pollution in complex terrains using the popular dis-
persion models such as ISC, ADMS and AERMOD

1. INTRODUCTION

The closure model like CTDMPLUS (James ef al.,
1992) and the transport models such as CALPUFF
and RAPTAD, which are relevant to the prediction
of air pollution dispersion in complex terrain, need
three-dimensional windfield data (US EPA, 2000;
Tamada et al., 1992; Hanna et al., 1984). There are
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because these models can not well simulate the
complexity of surface roughness and rolling terrain,
the spacial inhomogeneity of atmospheric stability
along the horizontal plane of the traveling plume,
and the unsteady state before sun-rise and after sun-
set (Christine and John, 2001; Hanna et al., 2001;
Boznar et al., 1993). Since horizontal Gaussian distri-
bution of pollution concentrations can not be assumed
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due to slow variations in wind direction over one-
hour period during stable conditions (Collet and Olu-
yemi, 1997), the prediction of air pollution using
Gaussian model does not perform well in such cases
even in flat terrain. Fumigation models, which were
specially formulated to estimate peak ground level
concentrations due to frequently occurring fumiga-
tion in the morning in coastal area, predict high con-
centrations better than ISC and ADMS dispersion
models do, however, can not predict so accurately
(Park and Seok, 2007). Predictions of short-term
concentrations using numerical models need high
monetary and time costs because of the large tem-
porary variations in the emission and meteorology
data and the spatial variations in the terrain data.
There are many situations where attaining detailed
informations on sources and other parameters such
as three-dimensional windfields is difficult.

While linear regression models have been used to
cope with the limitations relevant to dispersion
models, they do not accurately simulate nonlinear
environmental systems (Gardner and Dorling, 1998).
Predicting of air pollution concentration using time-
series models or a method combining time-series
models and dispersion models do not accurately
predict peak concentrations (Park and Kim, 1984).
Thus, the development of other methodology for
predicting the air pollution seers to be necessary so
that decisions concerning air pollution source plan-
ning can be accurately made. Although artificial neu-
ral network (ANN) models may not necessarily solve
all of the limitations of traditional statistical models,
they provide better approximations than traditional
statistical models because they efficiently compute
highly dimensional nonlinear data and generalize
correct prediction using new input data-sets once
computer training has occurred (Chelani ef al., 2002;
Gardner and Dorling, 1998; Kim and Lee, 1994;
Hormik ez al., 1989). Chelani et al. (2002) compared
the predictive performances of a multivariate regres-
sion model and an ANN model concerning ground
level SO, concentrations in the Delhi area, and con-
cluded that the performance of the ANN model, train-
ed with historical data of temperature, relative humi-
dity, wind speed, wind direction and SO, concentra-
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tion, was better than that of the multivariate regres-
sion model. There have been several papers report-
ing the applications of ANN models with multilayer
perception to predict ground level ozone concentra-
tion (Comrie, 1997; Yi and Prybutok, 1996) and emis-
sion rates of pollutants (Rege and Tock, 1996). Al-
though there has been a report that an ANN model
can correctly predict ground level SO, concentration
even when the computer was trained using very lim-
ited data (Mok and Tam, 1998), there do not appear
to exist any reports concerning how predictive per-
formance varies with the combined conditions of
prediction lagging time and averaging time. In this
study, the following studies were systematically car-
ried out to develop ANN models being able to pre-
dict the short -term ground-level SO, concentrations
in a complex coastal area where three-dimensional
windfield data are not available, but high prediction
performance is needed: (i) to select appropriate input
variables for the ANN model; (ii) to examine meth-
ods for supplementing the missing input data; (iii)
to examine how the modeling performances vary
with prediction lagging time and averaging time;
and (iv) to compare between the predictions of the
ground level SO, concentration using the ANN mo-
dels and atmospheric dispersion models.

2. DEVELOPMENT OF ANN MODELS

2.1 Structure and development of
ANN models

ANN models consist of input, hidden and output
layer to artificially simulate human intelligence, and
have been widely used in predicting the future of
very nonlinear time series by approximating the re-
levant functions between input and output variables,
and classifying the patterns of both variable. Neural
networks are capable of learning many patterns using
one or more hidden layers because neurons have
nonlinear activation functions (Gardner and Dorling,
1998). Fig. 1 illustrates a structure of a neural net-
work.

In this study, an error backpropagation algorithm
was used so that a computerized neural network could
learn the patterns that relate the historical data of
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Fig. 1. Structure of a neural network.

independent variables, including meteorological and
environmental pararameters, to the dependent envi-
ronmental variable at lag time. ANN models were
constructed by adjusting the initial linkage weights
on the basis of errors obtained from the output layer.
The procedure of developing an ANN model to pre-
dict atmospheric pollution is as follows: (i) to deter-
mine the input parameters influencing the level of
pollution and the number of nodes of the input layer,
(ii) to classify normalized data of meteorological and
environmental parameters into a training set (; 70%
of normalized data) for computer learning and a test
set for confirming the accuracy of the ANN model,
(iii) to repeatedly train the computer using the train-
ing set so that the errors between the measurements
and calculations fall into an appropriate range, and
(iv) to recognize the ANN models as a reliable tool
for forecasting the environmental concentrations in
future once the ANN models are confirmed as an
accurate approximator using the test set.

2.2 Preprocessing of input data

Taking the Zannetti et al.’s (1976) suggestions
concerning meteorological factors influencing the
SO, concentrations in Venice and the results of such
a study in Boryeung into consideration, SO, con-
centrations and meteorological factors, including
wind direction, wind speed, temperature and stabil-
ity, were selected as the input parameters of the ANN

models used to predict short-term SO, concentra-
tions. The parameter of SO, concentration was sel-
ected as an independent input variable because it re-
sults from the combined effects of meteorology and
emission, and contributes as a preceding empirical
data to the prediction of the dependent variable. The
selection of atmospheric stability differentiates this
study from previous relevant reports on ANN model
application. Through preliminary study (Sin, 2006),
linear and quadratic method were confirmed as being
superior to Lagrange and Spline methods in supple-
menting the missing data of wind direction, wind
speed, temperature, and SO, concentration, while
the Lagrange method was better than the other meth-
ods in supplementing the missing data of stability.
Thus, the linear method was used to supplement the
missing data of wind speed, wind direction, tempera-
ture and SO, concentration, and the Lagrange meth-
od used for stability. The work necessary for supple-
menting the input missing data was completed before
ANN modeling work. Since each input parameter
has values (or ranges) and units significantly differ-
ent from other parameters, all input data were nor-
malized using the Min-Max method (NN Toolbox
User’s Guide) expressed in equation (1) so that those
input variables had converged values ranging from
zero to unity.
X1 Xmin

X=—1—m (1)

Xmax ™ Xmin

where X is a normalized value of the input parame-
ters, and x,; is an input parameter value before nor-
malization.

Since an input parameter such as wind direction
with circulating characteristics could be perceived
by the neural network as if x° was identical with
(360—x)°, sigmoid normalization was conducted
using equation (2) before loading under considering
both the Boznar et al. (1993) and Chelani ez al.
(2002). Since the wind rose for the Boryeung area
shows that sea breeze from near NW direction could
cause fumigation in the coastal area, (1+sinf) ins-

b
tead of 1+sin<9+z>

(Chelani ef al., 2002) may be

reasonable as a function of wind direction indexing.
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Fig. 2. Neuron computing process.
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Where 6, is normalized wind direction, and 8, is wind
direction before normalization (°). (1+sin8,) is a wind
direction index, which can be normalized by dividing
with 2 so that resultant 8, can range from O to unity.

2.3 Computer training of ANN models and
the testing the training results
The input data of various parameters were distrib-
uted as signals into each neuron of the ANN input
layer (Fig. 1) and fed forward via the hidden layer to
the output layer, meanwhile the weighted sums of the

n
input data (x=2.f; - w;, where {; is the ith input data,
i=1

and w; is the weight for the ith input data) were
received as input by the next layer as shown in Fig.
2. The normalized prediction value of the nonlinear

1 L
Toe ™ Was obtained in the output layer,

and the error, €, was calculated by comparing the
output value with the normalized measurement
value. When the error value was inappropriate, the
feedforward networks stored in the computer were

function, y=

trained using the error backpropagation algorithm
(Fig. 3) proposed by Bishop (1995). Training was
terminated when the error value fell into a satisfac-
tory range after adjusting the linkage weight (W,=
W, +AW,), because over fitted neural networks might
reduce learning error, but could deteriorate the vali-
dation of prediction for new input data (Gardner and
Dorling, 1998).

The graphical user interface (GUI) was built using

0
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the MATLAB® 7.0 neural network toolbox, and used
to develop the ANN models in this study. Using the
GUI allowed (i) the input data for Boryeung area to
be normalized before it was loaded into the comput-
er system, (ii) the structure for a new ANN model to
be built, (iii) the number of neurons to be allocated
for each layer shown in Fig. 1, (iv) the ANN models
to be trained for each averaging time as well as the
prediction lagging time, and then (v) the ground level
SO, concentrations to be predicted for each combi-
nations of averaging time and prediction lagging
time after model validation based on the test data set
for Boryerng area. Five hundred was assigned as the
number of iteration to terminate computer training
process after checking the validation error via some
trial. The prediction accuracies of the models were
tested by comparing the predicted and measured
concentratoins, resulting in the adjustment of the
linkage weight (e.g., —0.65 for temperature, —6.30
for wind direction, 2.51 for wind speed, 1.80 for sta-
bility, and 1.60 for SO, concentration in Fig. 4(b)) to
improve the performance of the ANN models.

3. USE OF ANN MODELS FOR
PREDICTING AIR POLLUTION IN
COMPLEX COASTAL TERRAIN

3.1 Terrain, meteorology, and environmental
data in the modeling area

A coastal area in Boryeung, Korea was selected as

the modeling area for this study. Although there are

somewhat objective definitions of complex terrain
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Fig. 3. Error propagation procedure.

(Choi et al., 2007), coastal area was subjectively
defined as a complex terrain in this study in a sense
that sea and land, which have very different thermal
characteristics, are facing to each other. The follow-
ing data were available for this area: (i) hourly SO,
concentration data during Jan. to Dec., 2002 at 11
monitoring sites near the Boryeung power plant, (ii)
the emission source data of the power plant, (iii)
hourly data of temperature, wind direction, wind
speed, relative humidity, and rainfall, (iv) isolation,
cloudiness, cloud height, field pressure, and sea

level pressure recorded every three hours, and (v)
the atmospheric pressure and temperature data at
high aititude. Through multiregression analysis, tem-
perature, wind direction, wind speed, and atmosphe-
ric stability were identified as effective parameters
influencing the SO, concentration in the modeling
area. The fact that atmospheric stability was taken
as an independent parameter in the process of devel-
oping ANN models appears to be discriminate from
previous works.
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Fig. 4. Time series comparison between measurements and predictions of 1 hr average SO, concentrations using neural
network models for lagging time of (a) 1 hr, (b) 3 hrs, (c) 8 hrs, (d) 12 hrs, (e) 15 hrs, (f) 18 hrs, and (g) 24 hrs (n=216).

3.2 Modeling results and discussion

3.2.1 Comparing measurements and

calculations for various averaging and
prediction lagging time

Fig. 4 displays the 1 hr average SO, concentra-
tions predicted using the ANN models and the mea-

o
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sured concentrations. The ANN models completed
the training and testing procedures including the ad-
justment of initial linkage weights. The correlation
coefficients between the predicted and measured
SO, concentrations were found to decrease as the
prediction lagging time exceeds or becomes short
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Fig. 5. Variations in correlation coefficients between mea-
surements and predictions of SO, concentration
with prediction lagging time.

the averaging time as shown in Fig. 5. The decrease
in the correlation coefficient appears to be caused
due to the increased variations in the emission and
weather conditions when the lag time increased. If
the lag time exceeded about 12 hours, the perfor-
mance indices for the averaging time of 1 hr tended
to abruptly decrease. This result may probably be
due to the 12 hours period of weather change such
as the sea/land breeze and stable/unstable condition.
There could also be considerable change in emission
in addition to the meteorology.

In order to see the effect of the lagging time altera-
tion on the prediction performance of the ANN
models, calculations of SO, concentration were con-
ducted for various combinations of averaging time
and prediction lagging time, and the results were
shown in Fig. 6.

Ground level SO, concentrations averaged for
time periods of 3, 8 and 24 hours were calculated by
applying the initial linkage weight obtained for each
time period to the ANN models built for the various
lagging time. The correlation coefficients and skill
scores between the measurements and predictions of
216 pairs are shown in Table 1. The skill score was
taken as a fraction of the coincident instances to the
total pairs of predictions and measurements when
the range of each class for both groups was taken to
be 2 ppb.

The skill score of about 0.7 for the large samples
(n=216) appears to accord well with the predictions

that fall within FAC2 (a factor of two i.e. from 1/2
to 2 times of measurements). The skill score of 0.56
(n=216) for 24 hours of averaging and lagging time
appears to be a considerably large value, but corres-
ponds to the smallest value in Table 1. This fact sug-
gests that the ANN models can be used to predict
the short-term (averaging time <24 hrs) ground level
SO, concentrations less than 24 hours in advance
even over complex terrain. Considering Table 1, Figs.
4, 5 and 6, it may be concluded that the prediction
performance of ANN models tends to decrease as
the prediction lagging time exceeds or becomes short
the averaging time, but to increase as the lagging
time approaches the averaging time.

3.2.2 Predictoin performance comparison
between ANN and dispersion models

To investigate the performance of ANN models in
a complex coastal area, the 1 hr SO, concentration
predictions using the ANN and dispersion models
were compared at the SONGHAK site around the
Boryeung power plant. The dispersion models used
in this study were ISCST3, ADMS3, and fumigation
model. The model of Lyon and Cole (1973), expres-
sed in equation (3), was confirmed as a fumigation
model with good predictability of high SO, concen-
trations at ground level in the morning over coastal
area by Park and Seok (2007).

Con=lq] [ le_ exp(—0.5p%)dp)
e T
Tw0y T by exp(-y R0 ()

where C, ,y is the ground level concentration at (x,
y) during fumigation (g/m*), Q is emission strength
(g/s), y is the lateral departure from the plume axis
at the downwind distance x from source (m), O, is
the ground level lateral dispersion coefficient at dis-
tance x during fumigation (m), U is the mean wind
speed within thermal internal boundary layer (TIBL)
(m/s), h; is the thickness of TIBL at distance x from
source (m), and p is the difference between h; and
H, (effective stack height), normalized by o, (verti-
cal dispersion coefficient).

The input parameter, Oy, was defined by equa-
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Table 1. Correlation coefficients and skill scores (in brackets) between measurements and predictions of SO, concen-
trations (ppb) using neural network models (n=216) for various combinations of averaging and lagging time.

Averaging Lagging time, hr
time 1 3 8 12 15 18 24
lh 0.94(0.88) 0.93(0.82) 0.91(0.77) 0.86(0.76) 0.80(0.67) 0.65(0.58) 0.50(0.51)
3h 0.92(0.68) 0.74(0.70) 0.62(0.65) 0.52(0.60)
8h 0.77(0.67) 0.85 (0.66) 0.65(0.73) 0.51(0.75)
24h 0.64(0.71) 0.59(0.62) 0.55(0.68) 0.65 (0.56)
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Fig. 6. Time series comparison between measurements and predictions of SO, concentrations (ppb) using neural net-
work models for various combinations of averaging time and prediction lagging time (in brackets) of (a) 3 (3) hrs,

(b) 8(8) hrs, (c) 8 (15) hrs, and (d) 24 (24) hrs (n=216).

tion (4) and oy, was determined using equation (5)
from van Dop et al. (1979). These equations (4) and
(5) were also recommended by Park and Seok (2007)
after evaluation.

Oyfx) =0y THe/8 4)

2 — 2 2 2
%5070 Tyst) TO Ty~ 0 Tty &)
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where Oy, is the lateral dispersion coefficient (m)
within TIBL at distance x and height H, before de-
position of plume, Gy is G, (m) in the stable atmos-
pheric layer, and x, is the downwind distance (m)
for the plume to intersect the top of TIBL.

In order to evaluate the predictions of the ANN
and dispersion models in this study, the statistical
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Table 2. Statistical measures for the 1 hr SO, concentration prediction results of the ANN model and various disper-

sion models.

Statistical Measure value Recommended value ISCST3 ADMS3 Fumigation model ANN model
measure for perfect modeling of measure (n=1,820) (n=700) (n=230) (n=216)
FB 0 —0.3<FB<0.3" 1.74 -0.85 -0.12 -0.01
MMSE 0 NMSE < 4" 24.75 27.31 1.80 0.04
MG 1 0.7<MG< 1.3V - - 2.19 1.12
VG 1 VG< 1.6V - - 132.51 1.25
FAC2 1 0.5<FAC2" 0.003 0.003 0.33 0.94
I0A 1 0.5<10A% 0.38 0.01 0.26 0.98
UAPC 0 —0.2<UAPC=<0.2% —2.45 —12.16 0.07 0.12
MRE 0 —0.15<MRE<0.15¥ 0.87 -5.02 -1.03 0.05
R 1 depends on n value 0.03 0.26 0.08 0.93

1)Chang and Hanna (2004), Zawar-Reza et al. (2005), ¥Ziomas et al. (1998)

measures proposed by Chang and Hanna (2004),
Zawar-Reza et al. (2005), and Ziomas et al. (1998)
were used. Table 2 shows the recommended values
of those statistical measures, which were given by
these investigators, as well as the values for the
models results. The ANN model built for the one-
hour average and lag time was used for comparison
purpose. The ANN models were manifested to sig-
nificantly be superior to the dispersion models in-
cluding fumigation model even in predicting the
short-term SO, concentrations at ground level in the
morning in complex coastal area. Again, the ANN
model appears to be superior to other statistical mo-
dels including regressive method in the prediction
of short-term peak concentration.

4. CONCLUSIONS

Multilayer neural network models were built and
examined as alternatives to dispersion models in
order to improve air pollution predictions over com-
plex coastal terrain. Computer was trained for vari-
ous combinations of averaging and lagging times by
using the historical data of meteorological and envi-
ronmental parameters for the coastal area around the
Boryeung Power Plant. The following conclusions
were drawn from the performance investigation of
the ANN models:

1) The ANN model’s predictions of 1 hr SO, con-
centrations one hour in advance in a complex coas-

tal area were very significantly better in correctness
than those of the dispersion models for the same
time, area, pollutants and weather.

2) It was possible to make very accurate predic-
tions (R=0.74 for n=216) of short-term (<8 h) SO,
concentrations a short time (<8 h) in advance using
ANN models built with the historical data of SO,
concentrations and meteorological parameters in-
cluding temperature, wind speed, wind direction
and atmospheric stability. The coincidence level
between the measurements and the predictions of
SO, concentrations averaged over 24 hours made 24
hours in advance using the ANN models was found
to be considerably high (R=0.65 for n=216). This
level could be improved by appropriate selecting the
input parameters. Therefore, it may be concluded
that ANN models can be used as substitutes for
dispersion models in predicting the short-term (<24
h) air pollution levels less than 24 hours in advance
even over complex terrain.

3) The prediction performance of ANN models
tends to improve as the prediction lagging time ap-
proaches the concentration averaging time, but to
decrease as the lagging time departs from the averag-
ing time.
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