• Title/Summary/Keyword: Short-circuit failure mechanism

Search Result 10, Processing Time 0.022 seconds

Chlorine effect on ion migration for PCBs under temperature-humidity bias test (고온고습 전원인가 시험에서 Cl에 의한 이온 마이그레이션 불량)

  • Huh, Seok-Hwan;Shin, An-Seob
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • By the trends of electronic package to be more integrative, the fine Cu trace pitch of organic PCB is required to be a robust design. In this study, the short circuit failure mechanism of PCB with a Cl element under the Temperature humidity bias test ($85^{\circ}C$/85%RH/3.5V) was examined by micro-structural study. A focused ion beam (FIB) and an electron probe micro analysis (EPMA) were used to polish the cross sections to reveal details of the microstructure of the failure mode. It is found that $CuCl_x$ were formed and grown on Cu trace during the $170^{\circ}C$/3hrs and that $CuCl_x$ was decomposed into Cu dendrite and $Cl_2$ gas during the $85^{\circ}C$/85%RH/3.5V. It is suggested that Cu dendrites formed on Cu trace lead to a short circuit failure between a pair of Cu traces.

Failure Mechanism Analysis of SAW Device under RF High Power Stress (RF 고전력 스트레스에 의한 SAW Device의 고장메카니즘 분석)

  • Kim, Young-Goo;Kim, Tae-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.215-221
    • /
    • 2014
  • In this paper, the improved power durability test system and method for an reliability analysis of SAW device is proposed and the failure mechanism through failure analysis is analyzed. As a result of the failure analysis using microscope, SEM and EDX, the failure mechanism of the SAW device is electromigration due to joule heating under high current density and high temperature condition. The electromigration makes voids and hillocks in the IDT electrode and the voids and hillocks can lead to short circuit and open circuit faults, respectively, increasing the insertion loss of an SAW filter. The accelerated life testing of the SAW filter for 450MHz CDMA application using the proposed power durability test system and method is carried out. $B_{10}$ lifetime of the SAW filter using Eyring model and Weibull distribution is estimated as about 98,500 hours.

A Study on the Metallic ion Migration Phenomena of PCB (PCB의 금속 이온 마이그레이션 현상에 관한 연구)

  • Hong Won Sik;Kang Bo-Chul;Song Byeong Suk;Kim Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2005
  • Recently a lots of problems have observed in high densified and high integrated electronic components. One of them is ion migration phenomena, which induce the electrical short of electrical circuit. ion migration phenomena has been observed in the field of exposing the specific environment and using for a long tin e. This study was evaluated the generation time of ion migration and was investigated properly test method through water drop test and high temperature high humidity test. Also we observed direct causes and confirmed generation mechanism of dendritic growth as we reproduced the ion migration phenomena. We utilized PCB(printed circuit board) having a comb pattern as follows 0.5, 1.0, 2.0 mm pattern distance. Cu, SnPb and Au were electroplated on the comb pattern. 6.5 V and 15 V were applied in the comb pattern and then we measured the electrical short time causing by ion migration. In these results, we examined a difference of ion migration time depending on pattern materials, applied voltage and pattern spacing of PCB conductor.

A Technique for Analyzing LSI Failures Using Wafer-level Emission Analysis System

  • Higuchi, Yasuhisa;Kawaguchi, Yasumasa;Sakazume, Tatsumi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.15-19
    • /
    • 2001
  • Current leakage is the major failure mode of semiconductor device characteristic failures. Conventionally, failures such as short circuit breaks and gate breakdowns have been analyzed and the detected causes have been reflected in the fabrication process. By using a wafer-level emission-leakage failure analysis method (in-line QC), we analyzed leakage mode failure, which is the major failure detected during the probe inspection process for LSIs, typically DRAMs and CMOS logic LSIs. We have thus developed a new technique that copes with the critical structural failures and random failures that directly affect probe yields.

  • PDF

A Novel discharging MEMS device & glow discharge properties (미소간극을 갖는 MEMS 방전 소자 제작 및 특성 연구)

  • Kim, Joo-Hwan;Moon, Hyoung-Sik;Kim, Young-Min
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.46-48
    • /
    • 2004
  • A micro-scale discharge device has been fabricated using MEMS technology and failure mechanisms during DC discharge are investigated for the microstructure. The failure of sustaining the plasma is mainly caused by either open or short of the micro-electrodes, both resulting from the sputtered metal atoms during the DC discharge. The glow discharge lifetime of the microstructures is found to depend on bias circuit scheme as well as the electrode structure. Based on the understanding of the failure mechanism, a novel microstructure is suggested to improve discharge lifetime and the longer lifetime is experimentally demonstrated. In addition to the failure mechanism, an electric breakdown between two electrodes with microns gap are studied using micromachined metal structures. The electrode gap is able to be accurately controlled by thickness of a sacrificial layer and the electric breakdown was measured while varying the gap from $2{\mu}m$ to $20{\mu}m$. The electric breakdown behavior was found to highly depend on the electrode material, which was not considered in Paschen's law.

  • PDF

Ion Migration Failure Mechanism for Organic PCB under Biased HAST (고온고습 전압인가(Biased HAST) 시험에서 인쇄회로기판의 이온 마이그레이션 불량 메커니즘)

  • Huh, Seok-Hwan;Shin, An-Seob;Ham, Suk-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • By the trends of electronic package to be smaller, thinner and more integrative, organic printed circuit board is required to be finer Cu trace pitch. This paper reports on a study of failure mechanism for PCB with fine Cu trace pitch using biased HAST. In weibull analysis of the biased HAST lifetime, it is found that the acceleration factor (AF) of between $135^{\circ}C/90%RH/3.3V$ and $130^{\circ}C/85%RH/3.3V$ is 2.079. A focused ion beam (FIB) was used to polish the cross sections to reveal details of the microstructure of the failure mode. It is found that $Cu_xO/Cu(OH)_2$ colloids and Cu dendrites were formed at anode (+) and at cathode (-), respectively. Thus, this gives the evidence that Cu dendrites formed at cathode by $Cu^{2+}$ ion migration lead to a short failure between a pair of Cu nets.

Electrical Lifetime Estimation of a Relay by Accelerated Life Test (가속수명시험을 이용한 릴레이의 전기적 수명예측)

  • Kim, Jae-Jung;Chang, Seog-Weon;Son, Young-Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.430-436
    • /
    • 2008
  • This paper proposes a way to predict electrical lifetime of a relay using Accelerated Life Testings (ALTs). The relay of interest mounting on printed circuit boards is usually under an inrush current stress. The inrush current is generated and accelerated through controlling a lamp switching device in the ALT. We find that the dominant failure mechanism under high levels of inrush current would be contact welding in the contact surface of the relay and the contact welding process is accelerated according to increase in inrush current. The electrical lifetime model based on Inverse Power Law in term of inrush current is proposed, and parameters characterizing relay's lifetime distribution are statistically estimated using ALTA 6 PRO software.

Effects of Ag and Cu Additions on the Electrochemical Migration Susceptibility of Pb-free Solders in Na2SO4 Solution

  • Yoo, Y.R.;Nam, H.S.;Jung, J.Y.;Lee, S.B.;Park, Y.B.;Joo, Y.C.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.50-55
    • /
    • 2007
  • The smaller size and higher integration of advanced electronic package systems result in severe electrochemical reliability issues in microelectronic packaging due to higher electric field under high temperature and humidity conditions. Under these harsh conditions, electronic components respond to applied voltages by electrochemical ionization of metal and the formation of a filament, which leads to short-circuit failure of an electronic component, which is termed electrochemical migration. This work aims to evaluate electrochemical migration susceptibility of the pure Sn, Sn-3.5Ag, Sn-3.0Ag-0.5Cu solder alloys in $Na_{2}SO_{4}$. The water drop test was performed to understand the failure mechanism in a pad patterned solder alloy. The polarization test and anodic dissolution test were performed, and ionic species and concentration were analyzed. Ag and Cu additions increased the time to failure of Pb-free solder in 0.001 wt% $Na_{2}SO_{4}$ solution at room temperature and the dendrite was mainly composed of Sn regardless of the solders. In the case of SnAg solders, when Ag and Cu added to the solders, Ag and Cu improved the passivation behavior and pitting corrosion resistance and formed inert intermetallic compounds and thus the dissolution of Ag and Cu was suppressed; only Sn was dissolved. If ionic species is mainly Sn ion, dissolution content than cathodic deposition efficiency will affect the composition of the dendrite. Therefore, Ag and Cu additions improve the electrochemical migration resistance of SnAg and SnAgCu solders.

Pressure Regulation System for Optimal Operation of the Pneumatic VAD with Bellows-Type Closed Pneumatic Circuit (벨로우즈 방식의 폐회로를 가진 공압식 심실 보조장치의 최적 작동을 위한 압력 조절 시스템)

  • Kim, Bum-Soo;Lee, Jung-Joo;Nam, Kyung-Won;Jeong, Gi-Seok;Ahn, Chi-Bum;Sun, Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.569-576
    • /
    • 2007
  • Ventricular Assist Device(VAD) has switched its goal from a short-tenn use for bridge-to-transplantation to a long-tenn use for destination therapy, With this goal, the importance of long-tenn reliability gets more interests and importances, H-VAD is an portable extracorporeal biventricular assist device, and adopts an electro-pneumatic driving mechanism. The pneumatic pressure to pump out blood is generated with compression of bellows, and is transmitted in a closed pneumatic circuit through a pneumatic line. The existing pneumatic VAD adopts a air compressor which can generate stable pressures but has defects such as a noise and a size problem. Thus, it is not suitable for being used as a portable device, These problems are covered with adopting a closed pneumatic circuit mechanism with a bellows which has a small size and small noise generation, but it has defects that improper pneumatic setting causes a failure of adequate flow generation. In this study, the pneumatic pressure regulation system is developed to cover these defects of a bellows-type pneumatic VAD. The optimal pneumatic pressure conditions according to various afterload conditions for an optimal flow rate were investigated and the afterload estimation algorithm was developed, The final pneumatic regulation system estimates a current afterload and regulate the pneumatic pressure to the optimal point at a given afterload condition. The afterload estimation algorithm showed a sufficient performance that the standard deviation of error is 8.8 mmHg, The pneumatic pressure regulation system showed a sufficient performance that the flow rate was stably governed to various afterload conditions. In a further study, if a additional sensor such as ultrasonic sensor is developed to monitor the direct movement of diaphragm in a blood pump part, the reliability would be greatly increased. Moreover, if the afterload estimation algorithm gets more accuracy, it would be also helpful to monitor the hemodynamic condition of patients.

Influence of Polarization Behaviors on the ECM Characteristics of SnPb Solder Alloys in PCB (PCB에서의 ECM 특성에 미치는 SnPb 솔더 합금의 분극거동의 영향)

  • Lee Shin-Bok;Yoo Young-Ran;Jung Ja-Young;Park Young-Bae;Kim Young-Sik;Joo Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.167-174
    • /
    • 2005
  • Smaller size and higher integration of electronic components make smaller gap between metal conducting layers in electronic package. Under harsh environmental conditions (high temperature/humidity), electronic component respond to applied voltages by electrochemically ionization of metal and metal filament formation, which lead to short failure and this phenomenon is termed electrochemical migration(ECM). In this work, printed circuit board(PCB) is used for determination of ECM characteristics. Copper leads of PCB are soldered by eutectic solder alloys. Insulation breakdown time is measured at $85^{\circ}C,\;85{\%}RH$. CAF is the main mechanism of ECM at PCB. Pb is more susceptible to CAF rather than Sn, which corresponds well to the corrosion resistance of solder materials in aqueous environment. Polarization tests in chloride or chloride-free solutions fur pure metal and eutectic solder alloys are performed to understand ECM characteristics. Lifetime results show well defined log-normal distribution which resulted in biased voltage factor(n=2) by voltage scaling. Details on migration mechanism and lifetime statistics will be presented and discussed.

  • PDF