• Title/Summary/Keyword: Short-Term Load Forecast

Search Result 38, Processing Time 0.021 seconds

Short-Term Prediction Model of Postal Parcel Traffic based on Self-Similarity (자기 유사성 기반 소포우편 단기 물동량 예측모형 연구)

  • Kim, Eunhye;Jung, Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.76-83
    • /
    • 2020
  • Postal logistics organizations are characterized as having high labor intensity and short response times. These characteristics, along with rapid change in mail volume, make load scheduling a fundamental concern. Load analysis of major postal infrastructures such as post offices, sorting centers, exchange centers, and delivery stations is required for optimal postal logistics operation. In particular, the performance of mail traffic forecasting is essential for optimizing the resource operation by accurate load analysis. This paper addresses a traffic forecast problem of postal parcel that arises at delivery stations of Korea Post. The main purpose of this paper is to describe a method for predicting short-term traffic of postal parcel based on self-similarity analysis and to introduce an application of the traffic prediction model to postal logistics system. The proposed scheme develops multiple regression models by the clusters resulted from feature engineering and individual models for delivery stations to reinforce prediction accuracy. The experiment with data supplied by main postal delivery stations shows the advantage in terms of prediction performance. Comparing with other technique, experimental results show that the proposed method improves the accuracy up to 45.8%.

Data Mining Technique Using the Coefficient of Determination in Holiday Load Forecasting (특수일 최대 전력 수요 예측을 위한 결정계수를 사용한 데이터 마이닝)

  • Wi, Young-Min;Song, Kyung-Bin;Joo, Sung-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.18-22
    • /
    • 2009
  • Short-term load forecasting (STLF) is an important task in power system planning and operation. Its accuracy affects the reliability and economic operation of power systems. STLF is to be classified into load forecasting for weekdays, weekends, and holidays. Due to the limited historical data available, it is more difficult to accurately forecast load for holidays than to forecast load for weekdays and weekends. It has been recognized that the forecasting errors for holidays are large compared with those for weekdays in Korea. This paper presents a polynomial regression with data mining technique to forecast load for holidays. In statistics, a polynomial is widely used in situations where the response is curvilinear, because even complex nonlinear relationships can be adequately modeled by polynomials over a reasonably small range of the dependent variables. In the paper, the coefficient of determination is proposed as a selection criterion for screening weekday data used in holiday load forecasting. A numerical example is presented to validate the effectiveness of the proposed holiday load forecasting method.

A short-term Load Forecasting Using Chaotic Time Series (Chaos특성을 이용한 단기부하예측)

  • Choi, Jae-Gyun;Park, Jong-Keun;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.835-837
    • /
    • 1996
  • In this paper, a method for the daily maximum load forecasting which uses a chaotic time series in power system and artificial neural network(Back-propagation) is proposed. We find the characteristics of chaos in power load curve and then determine a optimal embedding dimension and delay time. For the load forecast of one day ahead daily maximum power, we use the time series load data obtained in previous year. By using of embedding dimension and delay time, we construct a strange attractor in pseudo phase plane and the artificial neural network model trained with the attractor mentioned above. The one day ahead forecast errors are about 1.4% for absolute percentage average error.

  • PDF

Short-term load forecasting using compact neural networks (최소 구조 신경회로망을 이용한 단기 전력 수요 예측)

  • Ha, Seong-Kwan;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.91-93
    • /
    • 2004
  • Load forecasting is essential in order to supply electrical energy stably and economically in power systems. ANNs have flexibility to predict a nonlinear feature of load profiles. In this paper, we selected just the necessary input variables used in the paper(2) which is based on the phase-space embedding of a load time-series and reviewing others. So only 5 input variables were selected to forecast for spring, fall and winter season and another input considering temperature sensitivity is added during the summer season. The training cases are also selected from all previous data composed training cases of a 7-day, 14-day and 30-day period. Finally, we selected the training case of a 7-day period because it can be used in STLF without sacrificing the accuracy of the forecast. This allows more compact ANNs, smaller training cases. Consequently, test results show that compact neural networks can be forecasted without sacrificing the accuracy.

  • PDF

Hourly load forecasting (시간별 전력부하 예측)

  • Kim, Moon-Duk;Lee, Yoon-Sub
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.495-497
    • /
    • 1992
  • Hourly load forecasting has become indispensable for practical simulation of electric power system as the system become larger and more complicated. To forecast the future hourly load the cyclic behavior of electric load which follows seasonal weather, day or week and office hours is to be analyzed so that the trend of the recent behavioral change can be extrapolated for the short term. For the long term, on the other hand, the changes in the infra-structure of each electricity consumer groups should be assessed. In this paper the concept and process of hourly load forecasting for hourly load is introduced.

  • PDF

Development of a Prediction Model of Solar Irradiances Using LSTM for Use in Building Predictive Control (건물 예측 제어용 LSTM 기반 일사 예측 모델)

  • Jeon, Byung-Ki;Lee, Kyung-Ho;Kim, Eui-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.41-52
    • /
    • 2019
  • The purpose of the work is to develop a simple solar irradiance prediction model using a deep learning method, the LSTM (long term short term memory). Other than existing prediction models, the proposed one uses only the cloudiness among the information forecasted from the national meterological forecast center. The future cloudiness is generally announced with four categories and for three-hour intervals. In this work, a daily irradiance pattern is used as an input vector to the LSTM together with that cloudiness information. The proposed model showed an error of 5% for learning and 30% for prediction. This level of error has lower influence on the load prediction in typical building cases.

Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable (기상변수를 고려한 모델에 의한 단기 최대전력수요예측)

  • Koh, H.S.;Lee, C.S.;Choy, J.K.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.292-294
    • /
    • 2000
  • This paper is presented the method peak load forecast based on multiple regression Model. Forecasting model was composed with the temperature-humidity and the discomfort index. Also the week periodicity was excluded from weekday change coefficient of two types. Forecasting result was good with about 3[%]. And, utility of presented forecast model using statistical tests has been proved. Therefore, This results establish appropriateness and fitness of forecast models using peak power demand forecasting.

  • PDF

Short-term Forecasting of Power Demand based on AREA (AREA 활용 전력수요 단기 예측)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

Development of Weather Forecast Models for a Short-term Building Load Prediction (건물의 단기부하 예측을 위한 기상예측 모델 개발)

  • Jeon, Byung-Ki;Lee, Kyung-Ho;Kim, Eui-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this work, we propose weather prediction models to estimate hourly outdoor temperatures and solar irradiance in the next day using forecasting information. Hourly weather data predicted by the proposed models are useful for setting system operating strategies for the next day. The outside temperature prediction model considers 3-hourly temperatures forecasted by Korea Meteorological Administration. Hourly data are obtained by a simple interpolation scheme. The solar irradiance prediction is achieved by constructing a dataset with the observed cloudiness and correspondent solar irradiance during the last two weeks and then by matching the forecasted cloud factor for the next day with the solar irradiance values in the dataset. To verify the usefulness of the weather prediction models in predicting a short-term building load, the predicted data are inputted to a TRNSYS building model, and results are compared with a reference case. Results show that the test case can meet the acceptance error level defined by the ASHRAE guideline showing 8.8% in CVRMSE in spite of some inaccurate predictions for hourly weather data.

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.