• Title/Summary/Keyword: Short-Circuit Test Failure

Search Result 12, Processing Time 0.028 seconds

A Study on the Cause and Countermeasures of the Short-Circuit Test Failures of the Distribution Transformer (배전용 변압기의 단락시험 불량원인 및 그 대책에 관한 연구)

  • Park, Byung-Rak;Park, Hoon-Yang;Shin, Hee-Sang;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.75-81
    • /
    • 2011
  • This study aims to research and analyze the cause and countermeasures of the short-circuit test failures of the distribution transformer, which captures failure share at the highest level when carrying out its performance test. For this purpose, the research was done on the basis of 77 failure cases out of 998 tests in total performed by the Korea Electrotechnology Research Institute(KERI) from 2004 to 2010. Based on the research, the paper also includes analysis of the causes of the short-circuit test failures in its early stage of transformer development and proposes its countermeasures accordingly.

A Study on Failure Analysis of Low Voltage Breakers with Aging (경년열화에 따른 배선용 차단기류의 고장점 분석 연구)

  • Cho, Han-Goo;Lee, Un-Yong;Lee, You-Jung;Lee, Hae-Ki;Kang, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.501-502
    • /
    • 2006
  • In this paper, new and aging sample of MCCB and ELCB are investigated the main performance test such as short circuit test, mechanical and electrical endurance test, dielectric test and surge current test. The surface conditions of new and aging sample are analyzed by SEM, TGA and DSC. The ELCB occurred badness mainly in short circuit test and surge current test. The badness cause of short circuit test was confirmed due to imperfect contact of contact part.

  • PDF

Chlorine effect on ion migration for PCBs under temperature-humidity bias test (고온고습 전원인가 시험에서 Cl에 의한 이온 마이그레이션 불량)

  • Huh, Seok-Hwan;Shin, An-Seob
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • By the trends of electronic package to be more integrative, the fine Cu trace pitch of organic PCB is required to be a robust design. In this study, the short circuit failure mechanism of PCB with a Cl element under the Temperature humidity bias test ($85^{\circ}C$/85%RH/3.5V) was examined by micro-structural study. A focused ion beam (FIB) and an electron probe micro analysis (EPMA) were used to polish the cross sections to reveal details of the microstructure of the failure mode. It is found that $CuCl_x$ were formed and grown on Cu trace during the $170^{\circ}C$/3hrs and that $CuCl_x$ was decomposed into Cu dendrite and $Cl_2$ gas during the $85^{\circ}C$/85%RH/3.5V. It is suggested that Cu dendrites formed on Cu trace lead to a short circuit failure between a pair of Cu traces.

A Study on the Metallic ion Migration Phenomena of PCB (PCB의 금속 이온 마이그레이션 현상에 관한 연구)

  • Hong Won Sik;Kang Bo-Chul;Song Byeong Suk;Kim Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2005
  • Recently a lots of problems have observed in high densified and high integrated electronic components. One of them is ion migration phenomena, which induce the electrical short of electrical circuit. ion migration phenomena has been observed in the field of exposing the specific environment and using for a long tin e. This study was evaluated the generation time of ion migration and was investigated properly test method through water drop test and high temperature high humidity test. Also we observed direct causes and confirmed generation mechanism of dendritic growth as we reproduced the ion migration phenomena. We utilized PCB(printed circuit board) having a comb pattern as follows 0.5, 1.0, 2.0 mm pattern distance. Cu, SnPb and Au were electroplated on the comb pattern. 6.5 V and 15 V were applied in the comb pattern and then we measured the electrical short time causing by ion migration. In these results, we examined a difference of ion migration time depending on pattern materials, applied voltage and pattern spacing of PCB conductor.

A study for short-circuit tests of polymer arrester depends on standards (폴리머 피뢰기 단락회로내력시험에 대한 고찰)

  • Choi, I.S.;Kim, S.S.;Kim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1527-1528
    • /
    • 2006
  • This paper presents short-circuit tests for polymer-housed distribution arrestors depends on standards. The compared standards are IEC 60694(2004) and IEEE C62.11 (2005). Major differences depends on standards are prefaulted(pre-failure) method by means of a fuse wire and test procedure.

  • PDF

Acceleration Test of Ion Migration in FR-4 PCB Plated with Sn (Sn 표면처리된 FR-4 재질 PCB에서의 이온마이그레이션 가속시험)

  • Hwang, Soon-Mi;Jung, Young-Baek;Kim, Chul-Hee;Lee, Kwan-Hun
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.153-163
    • /
    • 2012
  • Recently, as a electronic components are becoming more high-density, so that electronic circuits have smaller pitches between the leads and are more vulnerable to insulation failure. And the reliability of electric insulation has become an ever important issue as device contact pitches and print patterns shrink. Ion migration occurs in highly humid environment as voltage is applied to an installed print circuit. Under highly humid and voltage applied circumstances, electronic components respond to applied voltages by electrochemical ionization of metals, and a conducting filament forms between the anode and cathode across a nonmetallic medium. This leads to short-circuit failure of the electronic component. In thesis, we study acceleration test of ion migration in FR-4 PCB plated with Sn. Voltage applied test of FR-4 PCB circuits plated with Sn was tested in the temperature and humidity environments. As a result of this test, equation of acceleration model was derived.

The Characteristic Study for Small Current Breaking of High Speed DC Circuit Breaker (직류고속도차단기의 소전류 차단 특성연구)

  • Min Byung-Hoon;Jang Woo-Jin;Ko In-Suk
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.396-402
    • /
    • 2006
  • Even the case DC circuit Breaker have good quality for interruption of high current like heavy load current, short-circuit current, the verification for small current breaking capability of circuit breaker should be performed. It comes from the reason DC small current breaking failure can be lead to break out second heavy fault condition and in the long run substation shutdown. In this paper, we can find the characteristics of DC small current and international test standard discription about small current breaking and one of the proper solution to get over it.

Failure Mechanism Analysis of SAW Device under RF High Power Stress (RF 고전력 스트레스에 의한 SAW Device의 고장메카니즘 분석)

  • Kim, Young-Goo;Kim, Tae-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.215-221
    • /
    • 2014
  • In this paper, the improved power durability test system and method for an reliability analysis of SAW device is proposed and the failure mechanism through failure analysis is analyzed. As a result of the failure analysis using microscope, SEM and EDX, the failure mechanism of the SAW device is electromigration due to joule heating under high current density and high temperature condition. The electromigration makes voids and hillocks in the IDT electrode and the voids and hillocks can lead to short circuit and open circuit faults, respectively, increasing the insertion loss of an SAW filter. The accelerated life testing of the SAW filter for 450MHz CDMA application using the proposed power durability test system and method is carried out. $B_{10}$ lifetime of the SAW filter using Eyring model and Weibull distribution is estimated as about 98,500 hours.

Electrical Lifetime Estimation of a Relay by Accelerated Life Test (가속수명시험을 이용한 릴레이의 전기적 수명예측)

  • Kim, Jae-Jung;Chang, Seog-Weon;Son, Young-Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.430-436
    • /
    • 2008
  • This paper proposes a way to predict electrical lifetime of a relay using Accelerated Life Testings (ALTs). The relay of interest mounting on printed circuit boards is usually under an inrush current stress. The inrush current is generated and accelerated through controlling a lamp switching device in the ALT. We find that the dominant failure mechanism under high levels of inrush current would be contact welding in the contact surface of the relay and the contact welding process is accelerated according to increase in inrush current. The electrical lifetime model based on Inverse Power Law in term of inrush current is proposed, and parameters characterizing relay's lifetime distribution are statistically estimated using ALTA 6 PRO software.

Effects of Ag and Cu Additions on the Electrochemical Migration Susceptibility of Pb-free Solders in Na2SO4 Solution

  • Yoo, Y.R.;Nam, H.S.;Jung, J.Y.;Lee, S.B.;Park, Y.B.;Joo, Y.C.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.50-55
    • /
    • 2007
  • The smaller size and higher integration of advanced electronic package systems result in severe electrochemical reliability issues in microelectronic packaging due to higher electric field under high temperature and humidity conditions. Under these harsh conditions, electronic components respond to applied voltages by electrochemical ionization of metal and the formation of a filament, which leads to short-circuit failure of an electronic component, which is termed electrochemical migration. This work aims to evaluate electrochemical migration susceptibility of the pure Sn, Sn-3.5Ag, Sn-3.0Ag-0.5Cu solder alloys in $Na_{2}SO_{4}$. The water drop test was performed to understand the failure mechanism in a pad patterned solder alloy. The polarization test and anodic dissolution test were performed, and ionic species and concentration were analyzed. Ag and Cu additions increased the time to failure of Pb-free solder in 0.001 wt% $Na_{2}SO_{4}$ solution at room temperature and the dendrite was mainly composed of Sn regardless of the solders. In the case of SnAg solders, when Ag and Cu added to the solders, Ag and Cu improved the passivation behavior and pitting corrosion resistance and formed inert intermetallic compounds and thus the dissolution of Ag and Cu was suppressed; only Sn was dissolved. If ionic species is mainly Sn ion, dissolution content than cathodic deposition efficiency will affect the composition of the dendrite. Therefore, Ag and Cu additions improve the electrochemical migration resistance of SnAg and SnAgCu solders.