• Title/Summary/Keyword: Short-Arc lamp

Search Result 7, Processing Time 0.025 seconds

The Design and Fabrication of an Electronic Ballast for High Intensity Short-Arc Lamps (고휘도 Short-Arc 램프용 전자식 안정기 설계 및 제작)

  • Kim, Il-Kwon;Park, Dae-Won;Lee, Sung-Geun;Kil, Gyung-Suk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.304-309
    • /
    • 2005
  • This paper presents an electronic ballast using a step down converter, a low frequency inverter for high intensity short-arc discharge lamp. The proposed ballast is composed of a full-wave rectifier, a step down converter operated as a current source with power regulation and a low frequency inverter with external ignition circuit. The ignition circuit generates high voltage pulse of $3{\sim}5[kV]$ peak, 130[Hz] periodically. Moreover, it is able to reignite at regular intervals by protective circuit. As experimental results on the test, acoustic resonance phenomenon is eliminated by operating the low frequency square wave voltage and current. Lamp voltage, current and consumption power are measured 123.8[V], 8.1[A] and 1,002[W], respectively. It was confirmed that the designed ballast operate the lamp with a constant power.

  • PDF

Design and Fabrication of an Electronic Ballast for Short-Arc Lamps (Short-Arc 램프용 전자식 안정기의 설계 및 제작)

  • Kim Il-Kwon;Han Ju-Seop;Kil Gyung-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.652-658
    • /
    • 2006
  • This paper deals with an electronic ballast for hish intensity short-arc discharge lamps, which consists of a boost converter, a step down converter operated as a current source with power regulation and a low frequency inverter with external ignition circuit The ignition circuit generates high voltage pulses of 130[Hz] up to 5 [kV]. A reignition circuit is equipped in the ballast, and it operates the lamp at a regular interval for protection when an ignition fails. Acoustic resonance phenomenon was eliminated by operating a low frequency square wave voltage and current. The measured lamp voltage, current and consumption power were 123.8 [V], 8.1 [A] and 1,002 [W], respectively. From the experiment, we confirmed that the prototype ballast operates the lamp with a constant power.

COMPARISON OF THE DECREE OF CONVERSION IN LIGHT-CURED COMPOSITE RESIN CURED BY HALOGEN AND PLASMA XENON ARC LAMP CURING UNIT (Halogen lamp 광조사기와 Plasma xenon arc lamp 광조사기에 의한 광중합 복합레진의 중합률 비교)

  • Lee, Young-Jun;Jeong, Byung-Cho;Choi, Nam-Ki;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.328-336
    • /
    • 2002
  • Recently, new light curing unit utilizing the plasma xenon arc lamp is introduced. This curing unit is operated at relatively high intensity, so shortening the curing time significantly. The aim of this experiment was to estimate curing capability of plasma xenon arc lamp curing unit compared to traditional halogen lamp curing unit. Degree of conversion was evaluated by Raman spectroscopy after irradiation of specimens with halogen lamp curing unit(Optilux 150, Demetron, USA) for 20s, 40s, 60s and plasma xenon arc lamp curing unit(flipo, Lokki, France) for 2s, 3s, 6s. The results showed that strong light intensity of plasma xenon arc lamp curing unit did not compensate for short exposure time completely. So, Multi-layered curing within 2mm thickness and additional exposure time is recommanded when light-cured composite resin is polymerized with plasma xenon arc lamp curing unit.

  • PDF

Analysis of the Effect on the Performance of Ceramic Metal Halide Lamp by the Loss of Elements that have been Filled in Arc Tube (아크튜브내의 구성물 손실이 세라믹 메탈 핼라이드 램프의 특성에 미치는 영향분석)

  • Jang, Hyeok-Jin;Yang, Jong-Kyung;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2446-2452
    • /
    • 2009
  • A Ceramic Metal-halide lamp is achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, metal-halide salts of the desired metals, having higher vapor pressures, are used to introduce the material into the basic discharge. The metal compounds are usually polyatomic iodides, which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Metals with multiple visible transitions are necessary to achieve high photometric efficiency and good color. Compounds of Sc, Dy, Ho, Tm, Ce, Pr, Yb and Nd are commonly used. The maximum visible efficacy of a Ceramic Metal Halide lamp, under the constant of a white light source, is predicted to be about 450lm/W. This is controlled principally by the chemical fill chosen for a particular lamp. Current these lamps achieve 130lm/W and these life time are the maximum 16,000[hr]. So factors of performance lower are necessary to improve lamp performance. In this paper, we analyzed factors of performance lower by accelerated deterioration test. The lamp was operated with short duration turn-on/turn-off procedure to enhance the effect due to electrode sputtering during lamp ignition. The tested lamp that was operated with a longer turn-on/off(20/20 minutes) showed blackening, changed distance between electrodes and lowered color rendering & color temperature by losses of Dy at 421.18nm, I at 511nm, T1 at 535nm and Na at 588nm compared with the new lamp.

Hazards Caused by UV Rays of Xenon Light Based High Performance Solar Simulators

  • Dibowski, Gerd;Esser, Kai
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.237-245
    • /
    • 2017
  • Background: Solar furnaces are used worldwide to conduct experiments to demonstrate the feasibility of solar-chemical processes with the aid of concentrated sunlight, or to qualify high temperature-resistant components. In recent years, high-flux solar simulators (HFSSs) based on short-arc xenon lamps are more frequently used. The emitted spectrum is very similar to natural sunlight but with dangerous portions of ultraviolet light as well. Due to special benefits of solar simulators the increase of construction activity for HFSS can be observed worldwide. Hence, it is quite important to protect employees against serious injuries caused by ultraviolet radiation (UVR) in a range of 100 nm to 400 nm. Methods: The UV measurements were made at the German Aerospace Center (DLR), Cologne and Paul-Scherrer-Institute (PSI), Switzerland, during normal operations of the HFSS, with a high-precision UV-A/B radiometer using different experiment setups at different power levels. Thus, the measurement results represent UV emissions which are typical when operating a HFSS. Therefore, the biological effects on people exposed to UVR was investigated systematically to identify the existing hazard potential. Results: It should be noted that the permissible workplace exposure limits for UV emissions significantly exceeded after a few seconds. One critical value was strongly exceeded by a factor of 770. Conclusion: The prevention of emissions must first and foremost be carried out by structural measures. Furthermore, unambiguous protocols have to be defined and compliance must be monitored. For short-term activities in the hazard area, measures for the protection of eyes and skin must be taken.

A Study on the Relationship of Change of Mechanical Properties and Carbonyl Index Induced through Short-wavelength Ultraviolet Radiation (254 nm) for High Density Polyethylene (단파장 자외선(254 nm)에 노출된 고밀도 폴리에틸렌 수지의 카르보닐 지수(CI)와 기계적 물성 변화의 관계에 관한 연구)

  • Kim, Chang-Hwan;Shin, Jin-Yong
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.138-143
    • /
    • 2013
  • This paper studied the possibility to predict a mechanical property variation from changes in created carbonyl bands by irradiating the surface of high-density polyethylene with short-wavelength ultraviolet radiation of 254 nm to induce a fast chemical degradation. The meaning of this study lies in checking whether a mechanical property change with the same chemical property as the induced optical deterioration is caused by using a UVC lamp with high photon energy instead of optical deterioration via xenon arc light source and outdoor exposure test via natural sunlight requiring a long time. The mechanical strength of high-density polyethylene checked by a tensile test and a creep destruction test showed a similar tendency with CI changes. In particular, the yield strength and elongation had a close relationship with the exposure time to ultraviolet radiation. Accordingly, this paper presented a method to grasp the mechanical property change outdoors requiring a long time more fast through the relationship between the mechanical property change and the carbonyl index using a UVC lamp causing the fast surface degradation.

2-Step Thermochemical Water Splitting on a Active Material Washcoated Monolith Using a Solar Simulator as Heat Source (인공태양을 이용한 모노리스 적용 반응기에서 2단계 열화학적 물분해 연구)

  • Kang, Kyoung-Soo;Kim, Chang-Hee;Park, Chu-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2007
  • Solar energy conversion to hydrogen was carried out via a two-step thermochemical water splitting using metal oxide redox pair. To simulate the solar radiation, a 7 kW short arc Xe-lamp was used. Partially reduced iron oxide and cerium oxide have the water splitting ability, respectively. So, $Fe_3O_4$ supported on $CeO_2$ was selected as the active material. $Fe_3O_4/CeO_2$(20 wt/80 wt%) was prepared by impregnation method, then the active material was washcoated on the ceramic honeycomb monolith made of mullite and cordierite. Oxygen was released at the reduction step($1673{\sim}1823\;K$) and hydrogen was produced from water at lower temperature($873{\sim}1273\;K$). The result demonstrate the possibility of the 2-step thermochemical water splitting hydrogen production by the active material washcoated monolith. And hydrogen and oxygen was produced separately without any separation process in a monolith installed reactor. But the SEM and EDX analysis results revealed that the support used in this experiment is not suitable due to the thermal instability and coating material migration.