• Title/Summary/Keyword: Short Wave Infrared

Search Result 44, Processing Time 0.026 seconds

Target Tracking based on Kernelized Correlation Filter Using MWIR and SWIR Sensors (MWIR 및 SWIR 센서를 이용한 커널상관필터기반의 표적추적)

  • Sungu Sun;Yuri Lee;Daekyo Seo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • When tracking small UAVs and drone targets in cloud clutter environments, MWIR sensors are often unable to track targets continuously. To overcome this problem, the SWIR sensor is mounted on the same gimbal. Target tracking uses sensor information fusion or selectively applies information from each sensor. In this case, parallax correction using the target distance is often used. However, it is difficult to apply the existing method to small UAVs and drone targets because the laser rangefinder's beam divergence angle is small, making it difficult to measure the distance. We propose a tracking method which needs not parallax correction of sensors. In the method, images from MWIR and SWIR sensors are captured simultaneously and a tracking error for gimbal driving is chosen by effectiveness measure. In order to prove the method, tracking performance was demonstrated for UAVs and drone targets in the real sky background using MWIR and SWIR image sensors.

Proximate Content Monitoring of Black Soldier Fly Larval (Hermetia illucens) Dry Matter for Feed Material using Short-Wave Infrared Hyperspectral Imaging

  • Juntae Kim;Hary Kurniawan;Mohammad Akbar Faqeerzada;Geonwoo Kim;Hoonsoo Lee;Moon Sung Kim;Insuck Baek;Byoung-Kwan Cho
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1150-1169
    • /
    • 2023
  • Edible insects are gaining popularity as a potential future food source because of their high protein content and efficient use of space. Black soldier fly larvae (BSFL) are noteworthy because they can be used as feed for various animals including reptiles, dogs, fish, chickens, and pigs. However, if the edible insect industry is to advance, we should use automation to reduce labor and increase production. Consequently, there is a growing demand for sensing technologies that can automate the evaluation of insect quality. This study used short-wave infrared (SWIR) hyperspectral imaging to predict the proximate composition of dried BSFL, including moisture, crude protein, crude fat, crude fiber, and crude ash content. The larvae were dried at various temperatures and times, and images were captured using an SWIR camera. A partial least-squares regression (PLSR) model was developed to predict the proximate content. The SWIR-based hyperspectral camera accurately predicted the proximate composition of BSFL from the best preprocessing model; moisture, crude protein, crude fat, crude fiber, and crude ash content were predicted with high accuracy, with R2 values of 0.89 or more, and root mean square error of prediction values were within 2%. Among preprocessing methods, mean normalization and max normalization methods were effective in proximate prediction models. Therefore, SWIR-based hyperspectral cameras can be used to create automated quality management systems for BSFL.

Transit Time Diodes Using Velocity Overshoot Effects for Submillimeter-Wave Frequency Range Operation (속도 오버슈트 효과를 이용하여 서브밀리미터파 주파수 영역에서 동작하는 주행 시간 다이오드)

  • 송인채
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.9-15
    • /
    • 2002
  • We propose a new transit time device to extend the operating frequency to submillimeter-wave(extreme infrared) ranges by utilizing velocity overshoot effects in the drift region. We name it a velocity overshoot transit time (OVTT) diode. This device adopts fast heterostructure tunneling as injection mechanism and a short drift region to optimize the velocity overshoot effects. To enhance dc-to-RF conversion efficiencym the drift region is designed with a bandgap grading method. Simulation results demonstrate that a VOTT diode can be operated at THz ranges.

A study on the HPHT-processed NOUV diamonds by means of their gemological and spectroscopic properties

  • Kim, Young-Chool;Choi, Hyun-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.3
    • /
    • pp.114-119
    • /
    • 2005
  • This study has been carried out with the eight HPHT processed NOUV diamonds - two yellow, two yellowish green, two green and two orangy yellow color stones. The gemological properties of these diamonds included a highly saturated body color, graphitized fractures around the girdles, tension cracks around crystalline inclusions, long-wave UV with medium yellowish green to a very strong yellowish green luminescence, and short-wave UV with faint yellowish green to a strong yellowish green luminescence. Distinctive features of spectroscopic properties include absorption peaks at 415 nm and 503 nm a strong absorption band at $460{\sim}480nm$ and a H2 center at 986nm. Infrared spectra showed an absorption peak at $1344cm^{-1}$ (C center), which is the characteristics related to single substitutional nitrogen.

STRATOSPHERIC IMAGES OF JUPITER DERIVED FROM HYDROCARBON EMISSIONS IN VOYAGER 1 AND 2 IRIS SPECTRA

  • Seo, Haing-Ja;Kim, Sang-Joon;Choi, W.K.;Kostiuk, T.;Bjoraker, G.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.471-478
    • /
    • 2005
  • Spectroscopic data obtained by the Infrared Interferometer Spectrometer (IRIS) aboard Voyager 1 and 2 have been re-visited. Using the spectroscopic data and footprints of the IRIS aperture on the planet, we constructed images of the stratosphere of Jupiter at the emission bands of hydrocarbons including $CH_4,\;C_2H_6,\;C_2H_2,\;C_3H_4,\;C_6H_6$, and $C_2H_4$. Thermal emission from the hydrocarbons on Jupiter originates from a broad region of the stratosphere extending from 1 to 10 millibars. We averaged the data using a bin of 20 degrees of longitude and latitudes in order to increase signal-to-noise ratios. The resultant images show interesting wave structure in Jupiter's stratosphere. Fourier transform analyses of these images yield wavenumbers 5 - 7 at mid-Northern and mid-Southern latitudes, and these results are different from those resulted from previous ground-based observations and recent Cassini CIRS, suggesting temporal variations on the stratospheric infrared pattern. The comparisons of the Voyager 1 and 2 spectra also show evidence of temporal intensity variations not only on the infrared hydrocarbon polar brightenings of hydrocarbon emissions but also on the stratospheric infrared structure in the temperate regions of Jupiter over the 4 month period between the two Voyager encounters. Short running title: Stratospheric Images of Jupiter derived from Voyager IRIS Spectra.

Inorganic Nanoparticles for Near-infrared-II Fluorescence Imaging (근적외선-II 형광 이미징을 위한 무기 나노입자)

  • Park, Yong Il
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.17-27
    • /
    • 2022
  • Fluorescence imaging is widely used to image cells or small animals due to its high temporal and spatial resolution. Because conventional fluorescence imaging uses visible light, the penetration depth of light within the tissue is low, phototoxicity may occur due to visible light, and the detection sensitivity is lowered due to interference by background autofluorescence. In order to overcome this limitation, long-wavelength light should be used, and fluorescence imaging using near-infrared-I (NIR-I) in the region of 700~900 nm has been developed. To further improve imaging quality, researchers are interested in using a longer wavelength light, near-infrared-II (NIR-II) ranging from 1000 to 1700 nm. In the NIR-II region, light scattering is further minimized, and the penetration depth of light in the tissue is improved up to about 10 mm, and autofluorescence of the tissue is reduced, enabling high sensitivity and resolution fluorescence imaging. In this review, among various NIR-II fluorescence imaging probes, inorganic nanoparticle-based probes with excellent photostability and easily tunable emission wavelength were described, focusing on single-walled carbon nanotubes, quantum dots, and lanthanide nanoparticles.

An Experimental Study of Surface Materials for Planting of Building Surface by the Radiant Heat Balance Analysis in the Summer (하절기 실험을 통한 건물녹화용 피복재료의 복사수지 해석)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.71-80
    • /
    • 2010
  • This study carried out to understand the thermal characteristics of various surface material which compose the city through the observation in the summer. To examine passive cooling effect of planting of building, it is arranged four different materials that is natural grass, grass block, concrete slab and artificial grass. The results of this study are as follows; (1) Natural grass and grass block show the lower surface temperature because of the structures of leaf can do more thermal dissipation effectively. (2) There is little surface temperature between artificial grass and concrete. But there is little high surface temperature difference between natural grass and concrete because of latent heat effect. (3) The concrete can play a role of the tropical nights phenomenon as high heat capacity of concrete compare with other materials. (4) It is nearly same color in artificial grass and natural grass but there is large difference between natural grass and artificial grass at albedo. There is different albedo in near infrared ray range. (5) A short wave radiation gives more effect at the globe temperature than long wave radiation. (6) The artificial turf protected the slab surface temperature increase in spite of thin and low albedo materials.

Development of Drought Stress Measurement Method for Red Pepper Leaves using Hyperspectral Short Wave Infrared Imaging Technique (초분광 단파적외선 영상 기술을 이용한 고추의 수분스트레스 측정 기술 개발)

  • Park, Eunsoo;Cho, Byoung-Kwan
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.50-55
    • /
    • 2014
  • This study was conducted to investigate the responses of red pepper (Hongjinju) leaves under water stress. Hyperspectral short wave infrared (SWIR, 1000~1800 nm) reflectance imaging techniques were used to acquire the spectral images for the red pepper leaves with and without water stress. The acquired spectral data were analyzed with a multivariate analysis method of ANOVA (analysis of variance). The ANOVA model suggested that 1449 nm wavebands was the most effective to determine the stress responses of the red pepper leaves exposed to the water deficiency. The waveband of 1449 nm was closely related to the water absorption band. The processed spectral image of 1449 nm could separate the non-stress, moderate stress (-20 kPa), and severe stress (-50 kPa) groups of red pepper leaves distinctively. Results demonstrated that hyperspectral imaging technique can be applied to monitoring the stress responses of red pepper leaves which are an indicator of physiological and biochemical changes under water deficiency.

Selecting Significant Wavelengths to Predict Chlorophyll Content of Grafted Cucumber Seedlings Using Hyperspectral Images

  • Jang, Sung Hyuk;Hwang, Yong Kee;Lee, Ho Jun;Lee, Jae Su;Kim, Yong Hyeon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.681-692
    • /
    • 2018
  • This study was performed to select the significant wavelengths for predicting the chlorophyll content of grafted cucumber seedlings using hyperspectral images. The visible and near-infrared (VNIR) images and the short-wave infrared images of cucumber cotyledon samples were measured by two hyperspectral cameras. A correlation coefficient spectrum (CCS), a stepwise multiple linear regression (SMLR), and partial least squares (PLS) regression were used to determine significant wavelengths. Some wavelengths at 501, 505, 510, 543, 548, 619, 718, 723, and 727 nm were selected by CCS, SMLR, and PLS as significant wavelengths for estimating chlorophyll content. The results from the calibration models built by SMLR and PLS showed fair relationship between measured and predicted chlorophyll concentration. It was concluded that the hyperspectral imaging technique in the VNIR region is suggested effective for estimating the chlorophyll content of grafted cucumber leaves, non-destructively.

Defect Detection of Ceramic Heating Plate Using Ultrasound Pulse Thermography (초음파 펄스 서모그라피를 이용한 세라믹 전열 판의 결함 검출)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.259-263
    • /
    • 2006
  • The applicability of UPT (Ultrasound Pulse Thermography) for real-time defect detection of the ceramic heating plate is described. The ceramic heating plate with superior insulation and high radiation is used to control the water temperature in underwater environment. The underwater temperature control system can be damaged owing to the short circuit, which resulted from the defect of the ceramic heating plate. A high power ultrasonic energy with pulse duration of 280 ms was injected into the ceramic heating plate in the vertical direction. The ultrasound excited vibration energy sent into the component propagate inside the sample until they were converted to the heat in the vicinity of the defect. Therefore, an injection of the ultrasound pulse wave which results in heat generation, turns the defect into a local thermal wave transmitter. Its local emission is monitored and recorded via the thermal infrared camera at the surface which is processed by image recording system. Measurements were Performed on 4 kinds of samples, composed of 3 intact plates and the defect plate. The observed thermal image revealed two area of crack in the defective ceramic heating plate.