Browse > Article
http://dx.doi.org/10.14478/ace.2022.1003

Inorganic Nanoparticles for Near-infrared-II Fluorescence Imaging  

Park, Yong Il (School of Chemical Engineering, Chonnam National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.1, 2022 , pp. 17-27 More about this Journal
Abstract
Fluorescence imaging is widely used to image cells or small animals due to its high temporal and spatial resolution. Because conventional fluorescence imaging uses visible light, the penetration depth of light within the tissue is low, phototoxicity may occur due to visible light, and the detection sensitivity is lowered due to interference by background autofluorescence. In order to overcome this limitation, long-wavelength light should be used, and fluorescence imaging using near-infrared-I (NIR-I) in the region of 700~900 nm has been developed. To further improve imaging quality, researchers are interested in using a longer wavelength light, near-infrared-II (NIR-II) ranging from 1000 to 1700 nm. In the NIR-II region, light scattering is further minimized, and the penetration depth of light in the tissue is improved up to about 10 mm, and autofluorescence of the tissue is reduced, enabling high sensitivity and resolution fluorescence imaging. In this review, among various NIR-II fluorescence imaging probes, inorganic nanoparticle-based probes with excellent photostability and easily tunable emission wavelength were described, focusing on single-walled carbon nanotubes, quantum dots, and lanthanide nanoparticles.
Keywords
Near-infrared-II; Short-wave infrared; Fluorescence; Imaging; Nanoparticles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, Synthesis and optical properties of emission-tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second near-infrared window, RSC Adv., 4, 41164-41171 (2014).   DOI
2 Z. Ma, M. Zhang, J. Yue, C. Alcazar, Y. Zhong, T. C. Doyle, H. Dai, and N. F. Huang, Near-infrared IIb fluorescence imaging of vascular regeneration with dynamic tissue perfusion measurement and high spatial resolution, Adv. Funct. Mater., 28, 1803417 (2018).   DOI
3 G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region, Angew. Chem. Int. Ed., 51, 9818-9821 (2012).   DOI
4 Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivoimaging, Chem. Soc. Rev., 44, 1302-1317 (2015).   DOI
5 D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, Rare-earth-doped biological composites as in vivo shortwave infrared reporters, Nat. Commun., 4, 2199 (2013).   DOI
6 B. Huang, J. Hu, H. Li, M.-Y. Luo, S. Chen, M. Zhang, Z.-J. Sun, and R. Cui, Near-infrared IIb emitting nanoprobe for high-resolution real-time imaging-guided photothermal therapy triggering enhanced anti-tumor immunity, ACS Appl. Bio Mater., 3, 1636-1645 (2020).   DOI
7 O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, Next-generation in vivo optical imaging with short-wave infrared quantum dots, Nat. Biomed. Eng., 1, 0056 (2017).   DOI
8 Y. Zhang, H. Yang, X. An, Z. Wang, X. Yang, M. Yu, R. Zhang, Z. Sun, and Q. Wang, Controlled synthesis of Ag2Te@Ag2S core-shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window, Small, 16, 2001003 (2020).   DOI
9 S. Sarkar, P. Le, J. Geng, Y. Liu, Z. Han, M. U. Zahid, D. Nall, Y. Youn, P. R. Selvin, and A. M. Smith, Short-wave infrared quantum dots with compact sizes as molecular probes for fluorescence microscopy, J. Am. Chem. Soc., 142, 3449-3462 (2020).   DOI
10 Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect, ACS Nano, 7, 7200-7206 (2013).   DOI
11 D. Kim, N. Lee, Y. I. Park, and T. Hyeon, Recent advances in inorganic nanoparticle-based NIR luminescence imaging: semiconductor nanoparticles and lanthanide nanoparticles, Bioconjugate Chem., 28, 115-123 (2017).   DOI
12 K. Welsher, S. P. Sherlock, and H. Dai, Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window, Proc. Natl. Acad. Sci. U. S. A., 108, 8943-8948 (2011).   DOI
13 S. Diao, J. L. Blackburn, G. Hong, A. L. Antaris, J. Chang, J. Z. Wu, B. Zhang, K. Cheng, C. J. Kuo, and H. Dai, Fluorescence imaging in vivo at wavelengths beyond 1500 nm, Angew. Chem. Int. Ed., 54, 14758-14762 (2015).   DOI
14 X. Dang, L. Gu, J. Qi, S. Correa, G. Zhang, A. M. Belcher, and P. T. Hammond, Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer, Proc. Natl. Acad. Sci. U. S. A., 113, 5179-5184 (2016).   DOI
15 K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai, A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice, Nat. Nanotechnol., 4, 773-780 (2009).   DOI
16 G. Chen, F. Tian, Y. Zhang, Y. Zhang, C. Li, and Q. Wang, Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots, Adv. Funct. Mater., 24, 2481-2488 (2014).   DOI
17 Y. Kong, J. Chen, H. Fang, G. Heath, Y. Wo, W. Wang, Y. Li, Y. Guo, S. D. Evans, S. Chen, and D. Zhou, Highly fluorescent ribonuclease-A-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window, Chem. Mater., 28, 3041-3050 (2016).   DOI
18 L. Li, C. Shao, T. Liu, Z. Chao, H. Chen, F. Xiao, H. He, Z. Wei, Y. Zhu, H. Wang, X. Zhang, Y. Wen, B. Yang, F. He, and L. Tian, An NIR-II-emissive photosensitizer for hypoxia-tolerant photodynamic theranostics, Adv. Mater., 32, 2003471 (2020).   DOI
19 C.-W. Lin, H. Yang, S. R. Sanchez, W. Mao, L. Pang, K. M. Beckingham, R. C. Bast, and R. B. Weisman, In vivo optical detection and spectral triangulation of carbon nanotubes, ACS Appl. Mater. Interfaces, 9, 41680-41690 (2017).   DOI
20 Y. Jiang, P. K. Upputuri, C. Xie, Z. Zeng, A. Sharma, X. Zhen, J. Li, J. Huang, M. Pramanik, and K. Pu, Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging, Adv. Mater., 31, 1808166 (2019).   DOI
21 H.-Y. Yang, Y.-W. Zhao, Z.-Y. Zhang, H.-M. Xiong, and S.-N. Yu, One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window, Nanotechnology, 24, 055706 (2013).   DOI
22 H. D. A. Santos, I. Z. Gutierrez, Y. L. Shen, J. Lifante, E. Ximendes, M. Laurenti, D. Mendez-Gonzalez, S. Melle, O. G. Calderon, E. L. Cabarcos, N. Fernandez, I. Chaves-Coira, D. Lucena-Agell, L. Monge, M. D. Mackenzie, J. Marques-Hueso, C. M. S. Jones, C. Jacinto, B. del Rosal, A. K. Kar, J. Rubio-Retama, and D. Jaque, Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging, Nat. Commun., 11, 12 (2020).   DOI
23 G. Hong, A. L. Antaris, and H. Dai, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng., 1, 0010 (2017).   DOI
24 F. Ding, Y. Fan, Y. Sun, and F. Zhang, Beyond 1000 nm emission wavelength: recent advances in organic and inorganic emitters for deep-tissue molecular imaging, Adv. Healthcare Mater., 8, 1900260 (2019).   DOI
25 S. He, J. Song, J. Liu, L. Liu, J. Qu, and Z. Cheng, Enhancing photoacoustic intensity of upconversion nanoparticles by photo-switchable azobenzene-containing polymers for dual NIR-II and photoacoustic imaging in vivo, Adv. Opt. Mater., 7, 1900045 (2019).   DOI
26 M. Zhao, B. Li, Y. Wu, H. He, X. Zhu, H. Zhang, C. Dou, L. Feng, Y. Fan, and F. Zhang, A tumor-microenvironment-responsive lanthanide-cyanine FRET sensor for NIR-II luminescence-lifetime in situ imaging of hepatocellular carcinoma, Adv. Mater., 32, 2001172 (2020).   DOI
27 Z. M. Tao, X. N. Dang, X. Huang, M. D. Muzumdar, E. S. Xu, N. M. Bardhan, H. Q. Song, R. G. Qi, Y. J. Yu, T. Li, W. Wei, J. Wyckoff, M. J. Birrer, A. M. Belcher, and P. P. Ghoroghchian, Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence, Biomaterials, 134, 202-215 (2017).   DOI
28 M. Chen, S. Feng, Y. Yang, Y. Li, J. Zhang, S. Chen, and J. Chen, Tracking the in vivo spatio-temporal patterns of neovascularization via NIR-II fluorescence imaging, Nano Res., 13, 3123-3129 (2020).   DOI
29 X. Yang, Z. Wang, H. Huang, S. Ling, R. Zhang, Y. Zhang, G. Chen, C. Li, and Q. Wang, A targeted activatable NIR-IIb nanoprobe for highly sensitive detection of ischemic stroke in a photo-thrombotic stroke model, Adv. Healthcare Mater., 10, 2001544 (2021).   DOI
30 X. Hao, C. Li, Y. Zhang, H. Wang, G. Chen, M. Wang, and Q. Wang, Programmable chemotherapy and immunotherapy against breast cancer guided by multiplexed fluorescence imaging in the second near-infrared window, Adv. Mater., 30, 1804437 (2018).   DOI
31 X. Li, M. Jiang, Y. Li, Z. Xue, S. Zeng, and H. Liu, 808 nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging, Mater. Sci. Eng. C, 100, 260-268 (2019).   DOI
32 F. Ren, L. Ding, H. Liu, Q. Huang, H. Zhang, L. Zhang, J. Zeng, Q. Sun, Z. Li, and M. Gao, Ultra-small nanocluster mediated synthesis of Nd3+-doped core-shell nanocrystals with emission in the second near-infrared window for multimodal imaging of tumor vasculature, Biomaterials, 175, 30-43 (2018).   DOI
33 K. Shou, Y. Tang, H. Chen, S. Chen, L. Zhang, A. Zhang, Q. Fan, A. Yu, and Z. Cheng, Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo second near-infrared window imaging and image-guided tumor surgery, Chem. Sci., 9, 3105-3110 (2018).   DOI
34 Y. Yang, J. Chen, Y. Yang, Z. Xie, L. Song, P. Zhang, C. Liu, and J. Liu, A 1064 nm excitable semiconducting polymer nanoparticle for photoacoustic imaging of gliomas, Nanoscale, 11, 7754-7760 (2019).   DOI
35 Z. Zhang, X. Fang, Z. Liu, H. Liu, D. Chen, S. He, J. Zheng, B. Yang, W. Qin, X. Zhang, and C. Wu, Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull mouse-brain imaging, Angew. Chem. Int. Ed., 59, 3691-3698 (2020).   DOI
36 H. Li, X. Wang, X. Li, S. Zeng, and G. Chen, Clearable shortwave-infrared-emitting NaErF4 nanoparticles for noninvasive dynamic vascular imaging, Chem. Mater., 32, 3365-3375 (2020).   DOI
37 C. Li, L. Cao, Y. Zhang, P. Yi, M. Wang, B. Tan, Z. Deng, D. Wu, and Q. Wang, Preoperative detection and intraoperative visualization of brain tumors for more precise surgery: a new dual-modality MRI and NIR nanoprobe, Small, 11, 4517-4525 (2015).   DOI
38 G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Agren, and P. N. Prasad, Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal, Nano Lett., 15, 7400-7407 (2015).   DOI
39 C. Wang, H. Lin, X. Ge, J. Mu, L. Su, X. Zhang, M. Niu, H. Yang, and J. Song, Dye-sensitized downconversion nanoprobes with emission beyond 1500 nm for ratiometric visualization of cancer redox state, Adv. Funct. Mater., 31, 2009942 (2021).   DOI
40 Y. Jiang, J. Li, X. Zhen, C. Xie, and K. Pu, Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study, Adv. Mater., 30, 1705980 (2018).   DOI
41 Z. Zhang, W. Xu, M. Kang, H. Wen, H. Guo, P. Zhang, L. Xi, K. Li, L. Wang, D. Wang, and B. Z. Tang, An all-round athlete on the track of phototheranostics: subtly regulating the balance between radiative and nonradiative decays for multimodal imaging-guided synergistic therapy, Adv. Mater., 32, 2003210 (2020).   DOI
42 W. Zhang, X. Sun, T. Huang, X. Pan, P. Sun, J. Li, H. Zhang, X. Lu, Q. Fan, and W. Huang, 1300 nm absorption two-acceptor semiconducting polymer nanoparticles for NIR-II photoacoustic imaging system guided NIR-II photothermal therapy, Chem. Commun., 55, 9487-9490 (2019).   DOI
43 H. Chen, K. Shou, S. Chen, C. R. Qu, Z. Wang, L. Jiang, M. Zhu, B. Ding, K. Qian, A. Y. Ji, H. Lou, L. Tong, A. Hsu, Y. Wang, D. W. Felsher, Z. Hu, J. Tian, and Z. Cheng, Smart self-assembly amphiphilic cyclopeptide-dye for near-infrared window-II imaging, Adv. Mater., 33, 2006902 (2021).   DOI
44 J. Qi, N. Alifu, A. Zebibula, P. Wei, J. W. Y. Lam, H.-Q. Peng, R. T. K. Kwok, J. Qian, and B. Z. Tang, Highly stable and bright AIE dots for NIR-II deciphering of living rats, Nano Today, 34, 100893 (2020).   DOI
45 S. Li, Q. Deng, Y. Zhang, X. Li, G. Wen, X. Cui, Y. Wan, Y. Huang, J. Chen, Z. Liu, L. Wang, and C.-S. Lee, Rational design of conjugated small molecules for superior photothermal theranostics in the NIR-II biowindow, Adv. Mater., 32, 2001146 (2020).   DOI
46 F. Ding, Z. Chen, W. Y. Kim, A. Sharma, C. Li, Q. Ouyang, H. Zhu, G. Yang, Y. Sun, and J. S. Kim, A nano-cocktail of an NIR-II emissive fluorophore and organoplatinum(II) metallacycle for efficient cancer imaging and therapy, Chem. Sci., 10, 7023-7028 (2019).   DOI
47 T. Li, L. Liu, P. Xu, P. Yuan, Y. Tian, Q. Cheng, and L. Yan, Multifunctional nanotheranostic agent for NIR-II imaging-guided synergetic photothermal/photodynamic therapy, Adv. Ther., 4, 2000240 (2021).   DOI
48 Z. Yu, B. Musnier, K. D. Wegner, M. Henry, B. Chovelon, A. Desroches-Castan, A. Fertin, U. Resch-Genger, S. Bailly, J.-L. Coll, Y. Usson, V. Josserand, and X. Le Guevel, High-resolution shortwave infrared imaging of vascular disorders using gold nanoclusters, ACS Nano, 14, 4973-4981 (2020).   DOI
49 W. Qin, N. Alifu, J. W. Y. Lam, Y. Cui, H. Su, G. Liang, J. Qian, and B. Z. Tang, Facile synthesis of efficient luminogens with AIE features for three-photon fluorescence imaging of the brain through the intact skull, Adv. Mater., 32, 2000364 (2020).   DOI
50 W. Zhang, W. Deng, H. Zhang, X. Sun, T. Huang, W. Wang, P. Sun, Q. Fan, and W. Huang, Bioorthogonal-targeted 1064 nm excitation theranostic nanoplatform for precise NIR-IIa fluorescence imaging guided efficient NIR-II photothermal therapy, Biomaterials, 243, 119934 (2020).   DOI
51 W. Shao, G. Chen, A. Kuzmin, H. L. Kutscher, A. Pliss, T. Y. Ohulchanskyy, and P. N. Prasad, Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window, J. Am. Chem. Soc., 138, 16192-16195 (2016).   DOI
52 Y. Zhong, Z. Ma, S. Zhu, J. Yue, M. Zhang, A. L. Antaris, J. Yuan, R. Cui, H. Wan, Y. Zhou, W. Wang, N. F. Huang, J. Luo, Z. Hu, and H. Dai, Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm, Nat. Commun., 8, 737 (2017).   DOI
53 Y. Zhong, Z. Ma, F. Wang, X. Wang, Y. Yang, Y. Liu, X. Zhao, J. C. Li, H. Du, M. Zhang, Q. Cui, S. Zhu, Q. Sun, H. Wan, Y. Tian, Q. Liu, W. Wang, K. C. Garcia, and H. Dai, In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles, Nat. Biotechnol., 37, 1322-1331 (2019).   DOI
54 Y. I. Park, S. H. Nam, J. H. Kim, Y. M. Bae, B. Yoo, H. M. Kim, K.-S. Jeon, H. S. Park, J. S. Choi, K. T. Lee, Y. D. Suh, and T. Hyeon, Comparative study of upconverting nanoparticles with various crystal structures, core/shell structures, and surface characteristics, J. Phys. Chem. C, 117, 2239-2244 (2013).   DOI
55 Y. Tang, Y. Li, X. Hu, H. Zhao, Y. Ji, L. Chen, W. Hu, W. Zhang, X. Li, X. Lu, W. Huang, and Q. Fan, "Dual lock-and-key"- controlled nanoprobes for ultrahigh specific fluorescence imaging in the second near-infrared window, Adv. Mater., 30, 1801140 (2018).   DOI
56 Q. Zhu, F. Sun, T. L. Li, M. Zhou, J. Ye, A. Ji, H. Wang, C. Ding, H. Chen, Z. Xu, and H. Yu, Engineering oxaliplatin prodrug nanoparticles for second near-infrared fluorescence imaging-guided immunotherapy of colorectal cancer, Small, 17, 2007882 (2021).   DOI
57 F. Ding, Y. Zhan, X. Lu, and Y. Sun, Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging, Chem. Sci., 9, 4370-4380 (2018).   DOI
58 G. Hong, S. Diao, A. L. Antaris, and H. Dai, Carbon nanomaterials for biological imaging and nanomedicinal therapy, Chem. Rev., 115, 10816-10906 (2015).   DOI
59 D. Kim, J. Kim, Y. I. Park, N. Lee, and T. Hyeon, Recent development of inorganic nanoparticles for biomedical imaging, ACS Central Sci., 4, 324-336 (2018).   DOI
60 F. Ren, Z. Jiang, M. Han, H. Zhang, B. Yun, H. Zhu, and Z. Li, NIR-II fluorescence imaging for cerebrovascular diseases, View, 2, 20200128 (2021).   DOI
61 R. Lv, Y. Wang, B. Lin, X. Peng, J. Liu, W. Lu, and J. Tian, Targeted luminescent probes for precise upconversion/NIR II luminescence diagnosis of lung adenocarcinoma, Anal. Chem., 93, 4984-4992 (2021).   DOI
62 S. Cheng, L. Liu, Q. Yang, Y. Li, and S. Zeng, In vivo optical bioimaging by using Nd-doped LaF3 luminescent nanorods in the second near-infrared window, J. Rare Earths, 37, 931-936 (2019).   DOI
63 L. Wu, J. Hu, Q. Zou, Y. Lin, D. Huang, D. Chen, H. Lu, and H. Zhu, Synthesis and optical properties of a Y3(Al/Ga)5O12:Ce3+,Cr3+,Nd3+ persistent luminescence nanophosphor: a promising near-infrared-II nanoprobe for biological applications, Nanoscale, 12, 14180-14187 (2020).   DOI
64 M. Y. Jiang, H. R. Liu, S. J. Zeng, and J. H. Hao, A general in situ growth strategy of designing theranostic NaLnF4@Cu2-xS nanoplatform for in vivo NIR-II optical imaging beyond 1500 nm and photothermal therapy, Adv. Ther., 2, 10 (2019).
65 Q. H. Yang, X. L. Li, Z. L. Xue, Y. B. Li, M. Y. Jiang, and S. J. Zeng, Short-wave near-infrared emissive GdPO4:Nd3+ theranostic probe for in vivo bioimaging beyond 1300 nm, RSC Adv., 8, 12832-12840 (2018).   DOI
66 H. Kantamneni, S. Barkund, M. Donzanti, D. Martin, X. Zhao, S. He, R. E. Riman, M. C. Tan, M. C. Pierce, C. M. Roth, V. Ganapathy, and P. V. Moghe, Shortwave infrared emitting multicolored nanoprobes for biomarker-specific cancer imaging in vivo, BMC Cancer, 20, 1082 (2020).   DOI
67 S. Tsuboi and T. Jin, Fluorescent gold nanoclusters for in vivo shortwave-infrared imaging, ECS J. Solid State Sci. Technol., 10, 096012 (2021).   DOI
68 Y. Dai, H. Zhao, K. He, W. Du, Y. Kong, Z. Wang, M. Li, Q. Shen, P. Sun, and Q. Fan, NIR-II excitation phototheranostic nanomedicine for fluorescence/photoacoustic tumor imaging and targeted photothermal-photonic thermodynamic therapy, Small, 17, 2102527 (2021).   DOI
69 Y. X. Liu, H. M. Fan, Q. W. Guo, A. Q. Jiang, X. X. Du, and J. Zhou, Ultra-small pH-responsive Nd-doped NaDyF4 nanoagents for enhanced cancer theranostic by in situ aggregation, Theranostics, 7, 4217-4228 (2017).   DOI