ITS(Intelligent Transport Systems)는 시민들의 교통이용 안전과 편의를 도모하고 교통 시스템의 효율적인 운영 및 관리를 위해 대도시를 중심으로 도입되었다. 우리나라의 경우 ITS가 전국적으로 확대되면서 도로소통상황, 교통량, 대중교통운영현황 및 관리상황, 대중교통이용현황 등 다양한 교통정보가 생성되고 있다. 본 논문에서는 ITS에서 수집되는 데이터 중 하나인 DSRC(Dedicated Short Range Communications) 빅데이터를 활용하여 도시 교통구조를 네트워크 분석 기법을 통해 규명한다. 이를 통해 도심에서의 복잡한 교통현상을 단순화시키고, 차량 흐름에 따른 도시 교통의 구조적 특징을 도출한다. 분석 결과는 도시의 교통을 좀 더 쉽게 이해할 수 있도록 도와주고, 향후에 도시교통의 혼잡 해소방안, 도로 확장 계획 등의 교통정책 수립시 기초연구 자료로 활용할 수 있다.
최근 IoT 기기들의 활성화에 의해 네트워크가 복잡해짐에 따라, 네트워크의 혼잡을 예측하고 미리 대비하기 위해 단기 트래픽 예측을 넘어 장기 트래픽 예측 연구가 활성화되고 있다. 단기 트래픽 예측 결과를 입력으로 재사용하는 재귀 전략은 멀티 스텝 트래픽 예측으로 확장되었지만, 재귀 단계가 진행될수록 오류가 축적되어 예측 성능 저하를 일으킨다. 이 논문에서는 다중 출력 전략을 사용한 LSTM 기반 멀티스텝 트래픽 예측 기법을 소개하고그 성능을 평가한다. 실제 DNS 요청 트래픽을 기반으로 실험한 결과, 제안된 LSTM기반 다중출력 전략 기법은 재귀 전략 기법에 비해 비정상성 트래픽에 대한 트래픽 예측 성능의 MAPE를 약 6% 줄일 수 있음을 확인하였다.
The research described in this paper is conducted to estimate the short-term concentrations of nonreactive pollutants such as CO and TSP from vehicle emissions near Kyungbu Highway. An emphasis is placed on the development of a model for a hourly traffic volume for each vehicle type, which is based on real traffic data. By using the model and the calculated emission factor due to vehicle speed for each vehicle type, the emission rate of CO and TSP for each traffic line is computed. The hourly emission rate and meteorological data are used to simulate by HIWAY-2 for the distance of 5m and 10m from the downwind edge of Kyungbu Highway located in relatively uncomplicated terrain.
Drowsy driving is a major cause of automobile crashes and can lead to more serious injuries than other causes of traffic accidents. Factors increasing the risk of drowsy driving and related crashes include sleep loss, late night driving, untreated or unrecognized sleep disorders, use of sedating medications and consumption of alcohol. Young people, especially young males, shift workers, and people with untreated sleep apnea syndrome and narcolepsy are well known as the population groups at highest risk. To prevent drowsy driving and its consequences, getting adequate and quality sleep is both easier and much more successful than any remedial measure. Other helpful behaviors include avoidance of alcoholic beverages and limiting late night driving. Taking a short nap or consuming caffeine can make a short-term difference in driving alertness. In addition, information should be actively provided to the public about the importance of sleep disorders and their consequences. To reduce injuries and death caused by drowsy driving, it is a prerequisite to increase public awareness that drowsy driving can cause serious automobile crashes and has morbidity and mortality rates as high as those of drunk driving.
이 논문에서는 지능형 교통 시스템(ITS)를 위해 IEEE 1609.3 표준 문서에서 규정한 WAVE 네트워킹 서비스를 위한 표준 프로토콜 개발 결과를 제시한다. 그 중에서 특히 WAVE Management Entity(WME)와 WAVE Short Message Protocl(WSMP) 개발 결과에 중점을 두고 설명한다. 검증을 위해서 Traffic Management System(TMS)과 RSU 관리자의 개발 결과와 이를 이용한 교통사고 발생 시나리오에서의 TMS의 동작을 통해 개발 결과에 대한 검증 결과도 제시한다.
The reduction of energy consumption at the base station (BS) has become more important recently. In this paper, we consider the adaptive muting of the antennas based on the predicted future traffic load to reduce the energy consumption where the number of active antennas is adaptively adjusted according to the predicted future traffic load. Given that traffic load is sequential data, three different RNN structures, namely long-short term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (Bi-LSTM) are considered for the future traffic load prediction. Through the performance evaluation based on the actual traffic load collected from the Afghanistan telecom company, we confirm that the traffic load can be estimated accurately and the overall power consumption can also be reduced significantly using the antenna musing.
기 제안된 수리적 동적통행배정모형은 전체 시뮬레이션 기간동안 시간종속적 교통수요와 교통망의 교통상황이 이미 안정되어 있고 장래에도 예측가능 하다는 가정을 전제로 개발되었다. 이러한 가정은 실제 시시각각으로 변화하는 교통수요와 교통상황의 예측 불가능함 고려할 때 비현실적이라고 할 수 있다. 한편, Rolling Horizon Implementation(RHI)은 기종점간의 수요행렬(trip matrix)과 교통상황(traffic condition)이 단기간의 예측시간동안 현재의 예측정보를 기반으로 신뢰성 있게 모니터링 될 수 있고, 그 시점에서 보다 미래로 연장된 시간으로는 불확실성(uncertainty)의 증가를 고려한다는 가정을 전제로 제안되었다. 따라서, RHI개념과 부합되는 수리적 동적통행배정모형은 시뮬레이션 출발시점에 수요와 교통상황에 대한 확정적 정보가 이미 획득되어 있고, 그 기간이후의 정보에 대해서는 시간이 흐름에 따른 정보의 유용성을 근거로 각 운전자 그룹이 인지 (Perceived)하는 가로망의 통행비용(travel cost)을 최소화되도록 차량을 배정하는 것으로, 실시간적으로 인지된 교통수요와 교통망에 대한 정보를 통행배정초기에 입력변수로 사용하여 실시간 교통정보모형으로서 운영가능 하다는 장점을 제공한다. 본 연구는 수리적 동적통행배정모형이 RHI개념과 부합되어 교통상황과 수요변화를 실시간적으로 반영하여 운영되도록 모형의 기능을 확장하는 데 있다. 이를 위해, 다계층 이용자(multiple user classes) 동적통행배정모형을 변동등식(variational equality)이론에 근거한 모형식을 기반으로, 실시간 통행배정에서 발생하는 종점에 도착하지 못한 차량(unfinished trips)과 이들의 재배정(rerouting strategy) 문제를 인식하고, 이 차량들을 링크상의 교통량 전파조건(flow propagation constraint)을 토대로 다음 통행배정 시간대의 실시간 수요로서 반영할 수 있는 방안을 제시한다.
More than 24.43 million people received a special pardon to mark the anniversary of Liberation Day on Aug. 15 and to commemorate other national event, during 15years(1995-2009), in this period six times of presidential pardon was implemented. The special pardon allows traffic law violator to drive again with their violation records wiped clean. But traffic records show that traffic accidents used to increase very fast in a short period by up to 3-15 percent after implementing the every massive pardons. This study explores the causal feedback relationship between presidential special pardon for traffic law violators and the occurrence of an traffic accidents using a system thinking approach and simulation modelling. Particularly, this study focused on the analysing significant negative impact of the traffic pardon on the occurrence of worrisome traffic accidents. The results of this study show that presidential special pardon have had impact on the traffic accidents as a increasing leverage of positive feedback loop and the obedience of traffic law as a decreasing leverage of negative feedback loop. Finally, this study conclude that the cyclical increasing pattern of traffic accident is resulting from the periodically conducted presidential pardons with political aims.
To meet increasing traffic requirements in mobile networks, small base stations (SBSs) are densely deployed, overlapping existing network architecture and increasing system capacity. However, densely deployed SBSs increase energy consumption and interference. Although these problems already exist because of densely deployed SBSs, even more SBSs are needed to meet increasing traffic demands. Hence, base station (BS) switching operations have been used to minimize energy consumption while guaranteeing quality-of-service (QoS) for users. In this study, to optimize energy efficiency, we propose the use of deep reinforcement learning (DRL) to create a BS switching operation strategy with a traffic prediction model. First, a federated long short-term memory (LSTM) model is introduced to predict user traffic demands from user trajectory information. Next, the DRL-based BS switching operation scheme determines the switching operations for the SBSs using the predicted traffic demand. Experimental results confirm that the proposed scheme outperforms existing approaches in terms of energy efficiency, signal-to-interference noise ratio, handover metrics, and prediction performance.
본 연구는 $\circled1$Cellular Automata(이하 CA)모형을 기반으로 대규모 네트워크에 적용 가능한 보다 현실적인 CA차량모형 구축. $\circled2$구축된 CA차량모형을 이용한 차량 모의실험기의 개발과 개발된 차량 모의실험기를 이용한 단기링크통행시간 예측으로 구성된다. 구축된 CA차량추종모형은 기존의 CA차량추종모형 보다 현실적으로 감속을 통한 정지과정을 설명하면서 거시적 지표인 교통량-밀도-속도관계를 설명하였다. 또한 링크의 유출교통량(Outflow)을 제어하기 위한 차량의 링크전이모형은 기존의 차량 링크전이모형에 비하여 보다 안정된 대기차량을 형성하였다. 단기링크통행시간 예측을 위한 차량모의실험기는 대규모 가로망에 적용이 가능하도록 차량묶음(Packet, 이하차량묶음)방식과 링크기반 모의실험방식으로 컴퓨터의 연산 수행속도 및 메모리를 효율적으로 처리할 수 있었으며, 기존의 시계열자료 예측기법에서 고려할 수 없었던 차량의 행태 및 링크 상에서 발생하는 이동류 과포화, 뒷막힘현상 등의 메커니즘을 고려함으로서 기존 시계열자료 예측기법에 비하여 우수한 예측력을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.