• 제목/요약/키워드: Short Fiber Material

검색결과 104건 처리시간 0.026초

열경화성 연속섬유 복합재를 이용해 외측 보강된 3D 프린팅 열가소성 복합재 구조물의 굽힘 특성 향상에 대한 연구 (A Study on the Improvement of Bending Characteristics of 3D Printed Thermoplastic Structures Reinforced at the Lateral Surface using Continuous Fiber Reinforced Thermosetting Composites)

  • 백운경;남기법;노재승;박성은;노정우
    • Composites Research
    • /
    • 제34권2호
    • /
    • pp.136-142
    • /
    • 2021
  • 3D 프린팅 기술은 금형이 없이 다양한 형태의 제품을 만들기 쉬운 장점이 있지만, 기존 보편화된 성형법에 비해 기계적 물성이 낮고, 소재 및 제작 조건 등에 따라 기계적 물성이 크게 달라지는 문제가 있다. 한편, 높은 물성을 구현하기 위해서는 제조비용이 높아지는 문제가 있어, 이에 대한 연구 필요성이 증가하고 있다. 본 연구에서는 단섬유 탄소섬유 보강 나일론 필라멘트를 이용하여 3D 프린팅 열가소성 구조물을 제작하였다. 또한 인발 성형된 연속섬유 형태의 탄소섬유 혹은 유리섬유 강화 열경화성 복합재를 이용해 외측면을 보강하여 기계적 물성 향상 방법을 제시하였다. 보강재의 보강 위치와 섬유의 종류에 따른 굽힘물성 향상을 확인하였다.

SFRC의 인장 파괴거동에 대한 해석 (Analysis on the Tensile Fracture Behavior of SFRC)

  • 김규선;이차돈;심종성;최기봉;박제선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.65-72
    • /
    • 1993
  • Steel fiber reinforced concrete(SFRC) which is made by short, randomly distributed steel fibers in concrete is superior in its tensile mechanical properties to plain concrete in enhancement of tensile strength and tensile ductility. These improvements are attributed to crack arresting mechanism and formation of longer crack paths due to fibers , which as a consequence lead to increase in energy absorption capacity of SFRC. In the post-peak region under tensile stresses, major macrocrack forms at critical section. The opening of this macrocrack is mainly resisted by both of the fiber pull-out bridging the cracked surfaces and the resistance by matrix softening. In this study, micromechaincal approach has been made in order to simulate tensile behavior of SFRC and based on which the theoretical model is presented. This model reflects the features of both the composite material concept and the spacing concept in predicting tensile strength of SFRC. The model also takes into account for the effects of matrix tensile softening and fiber bridging by pull-out on the resistance for the post-peak behavior of SFRC. It has been shown that the developed model satisfactory predicts the experimental results.

  • PDF

유리섬유강화 플라스틱의 공구재질 및 형상에 따른 절삭특성에 관한 연구 (A Study on the Cutting Characteristics of Glass Fiber Reinforced Plastics by Tool Materials and Type)

  • 안상욱;노상래
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1216-1224
    • /
    • 1996
  • In the use of glass fiber reinforced plastics it is often necessary to cutting the components, but the cutting GFRP is often made difficult by the delamination of composites and the short tool life. In this paper, the machinability of GFRP by mean of tool materials and type was experimentally investigated. By proper selection of cutting tool material and type excellent machining of this workpiece is achieved. The surface quality relate closely with the feed rate and cutting tools.

Design of a Polarization Splitter Based on a Dual-core Hexagonal-shaped Photonic Crystal Fiber

  • Jegadeesan, Subramani;Dhamodaran, Muneeswaran;Azees, Maria;Murugan, Arunachalam
    • Current Optics and Photonics
    • /
    • 제3권4호
    • /
    • pp.304-310
    • /
    • 2019
  • In this paper, a microstructured, hexagonal-shaped dual-core photonic crystal fiber (PCF) is proposed. The proposed structure has specific optical properties to obtain high birefringence and short coupling length, for different values of structural parameters varied over a wide range of wavelength. The properties are analyzed using a solid core of silica material. The proposed structure is implemented as a polarization splitter with splitting length of 1.9 mm and a splitting ratio of -34.988 dB, at a wavelength of 1550 nm. The obtained bandwidth in one band gap of about 81 nm. The numerical analysis ensures that the performance of the proposed polarization splitter is better than that of existing ones.

선형과 비선형 다중 스케일 재료 모델링을 활용한 유리섬유 강화 플라스틱의 피로해석 연구 (A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling)

  • 김영만;김용환
    • 한국전산구조공학회논문집
    • /
    • 제33권2호
    • /
    • pp.81-93
    • /
    • 2020
  • 본 연구를 통해 다양한 분야에서 재료의 역학적 거동을 해석하고 예측하는 방법인 유한요소법(Finite Element Method, FEM)을 활용하여 유리섬유 강화 플라스틱 복합재료의 피로 특성을 분석하였다. 이를 구현하기 위해 평균장 균질화(mean-field homogenization) 이론을 활용하여 고분자, 고무, 금속 등과 같은 다양한 복합재료를 위한 선형, 비선형 다중스케일 재료 모델링 프로그램인 Digimat을 이용하였다. 이를 통해 유리섬유 강화 플라스틱 복합재료의 미세 구조와 재료 모델을 정의하여 더욱 현실적으로 고분자 복합재료의 피로 거동을 예측하고자 한다. 참고문헌을 통해 시험 온도, 섬유배향, 응력비, 시편의 두께 등 다양한 변수들을 사용하여 30wt%의 단 섬유 질량 비율을 갖는 폴리부틸렌 텔레프탈레이트(polybutylene terephthalate, PBT)의 고분자 복합재료의 피로 특성을 조사하였다. 섬유배향 정보를 계산하기 위한 사출해석은 Moldflow 소프트웨어을 활용하였으며, 이를 유한요소 피로시편 모델에 매핑하였다. 대표적인 유한요소 상용 소프트웨어인 LS-DYNA는 섬유배향에 따른 고분자 복합재료의 응력 진폭을 계산하기 위해 Digimat과의 연성해석에 활용하였다. 그리고 수치해석을 활용한 피로수명 해석을 위해 다양한 재료 모델들로 구성된 FEMFAT 소프트웨어를 사용하였다. 선형 재료 모델의 연성해석 결과는 높은 응력 진폭에 의한 재료의 국부적 비선형이 발생하는 LCF 영역의 피로 특성을 연구하기 위해 Neuber 법칙을 사용하여 재료의 피로 거동을 분석하였으며, 비선형 재료 모델의 연성해석 결과 역시 FEMFAT을 활용한 피로수명 해석에 사용되었다. 연성해석과 피로해석의 결과는 섬유배향에 따라 유한요소 시편의 두께 방향으로 분석하여 유리섬유 강화 플라스틱 복합재료의 형태학적, 역학적 구조에 대해서 평가하였다.

CuO nanoparticle 및 fiber 로 구성된 PPS 복합재료의 sliding 조건하의 transfer film 에관한 연구 (Study of transfer film in the sliding of nanoscale CuO-filled and fiber-reinforced polyphenylene sulfide (PPS) composites)

  • 조민행;;박혜영;김윤준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.967-972
    • /
    • 2004
  • The role of transfer films formed during sliding of polymer composites against steel counterfaces was studied in terms of the tribological behaviors of composites. Four kinds of composites were included in this study: (1) unfilled PPS, (2) PPS+2%CuO, (3) PPS+2%CuO+5% carbon fiber (CF), and (4) PPS+2%CuO+15%Kevlar. The filler material CuO was in nanoscale particulate form and the reinforcing material was in the form of short fibers. The composites were prepared by compression molding at $310^{\circ}C$ and sliding tests were run in the pin-on-disk sliding configuration. The counterface was made of tool steel hardened to 55-60 HRC and finished to a surface roughness of 0.09-0.10 ${\mu}m$ Ra. Wear tests were run for 6 hrs at the sliding speed of 1 m/s and contact pressure of 0.65 MPa. Transfer films formed on the counterfaces during sliding were investigated using AFM and SEM. The results showed that as the transfer film became smooth and uniform, wear rate decreased. PPS+2%CuO+15%Kevlar composite showed the lowest steady state wear rate in this study and its transfer film showed the smoothest and the most uniform characteristics. The examination of worn surfaces of PPS+2%CuO composite using X-ray area scanning (dot mapping) showed back-transfer of steel counterface material to the polymer pin surface. This behavior is believed to strengthen the polymer pin surface during sliding thereby contributing to the decrease in wear rate.

  • PDF

Physcial and Fiber Properties of TMP and CTMP from Kenaf Cultivated at Reclaimed Land of Korea

  • Yoon, Seung-Lak;Kojima, Yasuo;Cho, Dong-Ha;Kim, Nam-Hum;Kim, Min-Joong;Lee, Myoung-Ku
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.2
    • /
    • pp.373-379
    • /
    • 2006
  • Fiber characteristics and fiber distribution of thermomechanical pulp(TMP), bisulfite chemithermomechanical pulp(bisulfite CTMP), neutral sulfite chemithermomechanical pulp(neutral sulfite CTMP) from kenaf(Hibiscus cannabinus L., Malvaceae) cultivar Tainug-2 cultivated in the reclaimed land of Korea were examined to use effectively nonwood fibers as an alternative raw material sources for papermaking. Yields of TMP and CTMP from kenaf were lower than those of TMP from hardwoods and CTMP from softwoods and hardwoods. Bark fibers of kenaf cultivar Tainung-2 ranged 2.04 to 2.30 mm long and $18.7{\sim}19.7{\mu}m$ width. Core fibers averaged 0.63 to 0.80 mm long and $29.5{\sim}31.4{\mu}m$ wide. Coarseness of bark fiber was higher than that of core fiber, and fiber from TMP were higher than those from both bisulfite CTMP and neutral sulfite CTMP. Curl indexes of bark fibers were higher than those of core fibers. However curl indexes were not significantly affected by the pulping conditions. Short fiber distributions were higher in core fibers from TMP and CTMP and long fiber distributions were higher in bark fibers. There was no significant difference in fiber distribution of whole and core fibers obtained from TMP and CTMP, Fibers from neutral sulfite CTMP, however, exhibited a little higher long fiber distribution. Distinct difference in anatomical characteristics was found between core and bast fibers of kenaf plant. Parenchyma cell, pith parenchyma cell and vessel were observed in core fibers and bast fiber in bast sections.

  • PDF

Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC

  • Kim, Seugnwon;Jung, Haekook;Kim, Yongjae;Park, Cheolwoo
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.163-171
    • /
    • 2018
  • Plain concrete is a brittle material with a very low tensile strength compared to compressive strength and critical tensile strain. This study analyzed the dynamic characteristics of high-performance fiber-reinforced cementitious composites based on slurry-infiltrated fiber concrete (SIFCON-based HPFRCC), which maximizes the steel-fiber volume fraction and uses high-strength mortar to increase resistance to loads, such as explosion and impact, with a very short acting time. For major experimental variables, three levels of fiber aspect ratio and five levels of fiber volume fraction between 6.0% and 8.0% were considered, and the flexural strength and toughness characteristics were analyzed according to these variables. Furthermore, three levels of the aspect ratio of used steel fibers were considered. The highest flexural strength of 65.0 MPa was shown at the fiber aspect ratio of 80 and the fiber volume fraction of 7.0%, and the flexural strength and toughness increased proportionally to the fiber volume fraction. The test results according to fiber aspect ratio and fiber volume fraction revealed that after the initial crack, the load of the SIFCON-based HPFRCC continuously increased because of the high fiber volume fraction. In addition, sufficient residual strength was achieved after the maximum strength; this achievement will bring about positive effects on the brittle fracture of structures when an unexpected load, such as explosion or impact, is applied.

Pectin from Passion Fruit Fiber and Its Modification by Pectinmethylesterase

  • Contreras-Esquivel, Juan Carlos;Aguilar, Cristobal N.;Montanez, Julio C.;Brandelli, Adriano;Espinoza-Perez, Judith D.;Renard, Catherine M.G.C.
    • Preventive Nutrition and Food Science
    • /
    • 제15권1호
    • /
    • pp.57-66
    • /
    • 2010
  • Passion fruit fiber pectin gels represent a new alternative pectin source with potential for food and non-food applications on a commercial scale. Pectic polysaccharides were extracted from passion fruit (Passiflora edulis) fiber using citric acid as a clean catalyst and autoclaved for 20 to 60 min at $121^{\circ}C$. The best condition of pectin yield with the highest molecular weight was obtained with 1.0% of citric acid (250 mg/g dry passion fruit fiber pectin) for 20 min of autoclaving. Spectroscopic analyses by Fourier transform infrared, enzymatic degradation reactions, and ion-exchange chromatography assays showed that passion fruit pectin extracted for 20 min was homogeneous high methoxylated pectin (70%). Gel permeation analysis confirmed that the pectin extract obtained by autoclaving by 20 min showed higher molecular weights than those autoclaved for 40 and 60 min. Passion fruit pectin extracted for 20 min was enzymatically modified with fungal pectinmethylesterase to create restructured gels. Short autoclave treatment (20 min) with citric acid as extractant resulted in a significant increase of gel strength, improving pectin extraction in terms of functionality. The treatment of solubilized material (pectic polysaccharides) in the presence of insoluble material (cellulose and hemicellulose) with pectinmethylesterase and calcium led to the creation of a stiffer passion fruit fiber pectin gel, while syneresis was not observed.

강섬유를 혼입한 철근콘크리트 보의 전단기둥에 관한 실험적 연구 (An experimental Study on Shear Behavior of Reinforced Concrete Beams With Steel Fibrous)

  • 배주성;김경수;김재욱;최일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.557-560
    • /
    • 1999
  • In civil engineering and construction field, recently the great enhancement of new material and building technique have been made by many studies and reports. These studies have attracted many countries, since 1980's those study on reinforcement with steel fiber have been done by America, Japan and the other countries. Designs and proposals on building method have been applied, several universities and laboratory centers in our country have been studied, but the study on field application is short. Also a part of study on the shear behavior of reinforced concrete beams with steel fiber has accomplished. but up to this time, reliable establishment is undone. Therefore, this study is performed the static loading test to analysis shear failure behavior in reinforced concrete beams with steel fiber. we have observed the limit load of shear force, primary bending crack load, primary diagonal crack load, evaluating relative of load and steel, crack increase and failure shape according to increase of load. Through the exam and the observation of output, we estimate the shear failure behavior of SFRC beams according to fiber mixing amount.

  • PDF