• 제목/요약/키워드: Short Fiber

검색결과 672건 처리시간 0.043초

오존처리(處理) 고수율(高收率)펄프의 고해(叩解) 특성(特性)(I) - 오존처리(處理) 펄프 고해후(叩解後) 섬유장(纖維長) 분포(分布) - (The Beating Properties of High Yield Pulp Treated Ozone(I) - Fiber Length Distribution of Ozonenation Pulp for Beating -)

  • 윤승락;코지마 야스오
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권2호
    • /
    • pp.75-80
    • /
    • 1997
  • This research has been examined to measure the degree of the fiber damage of ozonenation high yield pulp in the beating process. Ozone treated the TMP(Thermomechanical Pulp) and CTMP(Chemithermomechanical Pulp) of spruce and the CTMP of birch has been beaten to be reached 200ml(freeness) of its content. It had been studied the forming of fiber distribution by treatment for long fiber, short fiber, fine with the above method. As ozone treatment time gets longer, the pulp has showed the tendency of increasing the fiber content of 28, 48mesh. Ozone treated fiber has been increased long fiber content by being added softness. By given longer ozone treatment time, the TMP and CTMP of spruce has showed the decreasing of fiber content. On the contrary, CTMP of birch has showed the increasing its fiber content. It had proved that the results of difference are rather closer to the species of tree than closer to the kinds of pulp. The fiber content of over 200mesh which has created in beating process demonstrates the decreasing of its fiber content by getting longer ozone treatment time. The softness of fiber can be extracted by the lignin of fiber surface that had been formed by ozone treatment. Thus we assume that the fiber in the process of beating obtains less physical damage.

  • PDF

Fault Detection 기능을 갖는 이오나이저 모듈용 게이트 구동 칩 설계 (Design of Gate Driver Chip for Ionizer Modules with Fault Detection Function)

  • 김홍주;하판봉;김영희
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.132-139
    • /
    • 2020
  • 공기청정기에 사용되는 이오나이저 모듈은 권선형 transformer를 사용하여 방전전극인 HV+/HV-에 3.5KV/-4KV의 고전압을 공급하여 carbon fiber brush의 전계 방사에 의해 양이온과 음이온을 발생시킨다. 기존의 MCU를 이용한 이오나이저 모듈 회로는 PCB 사이즈가 크고 가격이 비싼 단점이 있고, 기존의 ring oscillator를 이용한 게이트 구동 칩은 oscillation 주기가 PVT(Process-Voltage-Temperature) 변동에 민감하고 HV+와 GND, HV-와 GND의 단락에 의한 fault detection 기능이 없으므로 화재나 감전의 위험이 있다. 그래서 본 논문에서는 7bit binary UP counter를 이용하여 PVT 변동이 있더라도 oscillation 주기를 조절하여 HV+ 전압이 목표 전압에 도달하게 한다. 그리고 HV+와 GND 사이의 단락을 검출하기 위한 HV+ short fault detection 회로, HV-와 GND 사이의 단락을 검출하기 위한 HV- short fault detection 회로와 HV+가 과전압 이상으로 올라가는 것을 검출하기 위한 OVP(Over-Voltage Protection) 회로를 새롭게 제안하였다.

위상 변조 및 첩 보상에 의한 초단 펄스 발생 (Short Pulse Generation Based on Phase Modulation and Chirp Compensation)

  • 전희정;임용훈;서동선;명승일;김호영
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2002년도 제13회 정기총회 및 2002년도 동계학술발표회
    • /
    • pp.174-175
    • /
    • 2002
  • We generate short optical pulses of ∼ 6 picoseconds at 10 GHz by chirped pulse compression based on phase modulation and chirp compensation. In the suggested method, sinusoidally driven intensity and phase modulators generate chirped pulses which are subsequently suppressed by chirp compensation using a single mode fiber.

  • PDF

Effects of Fiber Surface-Treatment and Sizing on the Dynamic Mechanical and Interfacial Properties of Carbon/Nylon 6 Composites

  • Cho, Dong-Hwan;Yun, Suk-Hyang;Kim, Jun-Kyung;Lim, Soon-Ho;Park, Min;Lee, Geon-Woong;Lee, Sang-Soo
    • Carbon letters
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2004
  • The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan ${\delta}$ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.

  • PDF

Theoretical Analysis and Optimization of Extrinsic Fabry-Perot Interferometer Optical-fiber Humidity-sensor Structures

  • Yin, Xiao Lei;Wang, Ning;Yu, Xiao Dan;Li, Yu Hao;Zhang, Bo;Li, Dai Lin
    • Current Optics and Photonics
    • /
    • 제5권6호
    • /
    • pp.652-659
    • /
    • 2021
  • The theoretical analysis and optimization of extrinsic Fabry-Perot interferometer (EFPI) opticalfiber humidity sensors are deeply investigated. For a typical dual-cavity structure composed of an optical fiber and a humidity-sensitive membrane (HSM), the changes in refractive index (RI) and initial length are discussed for polymer materials and porous oxide materials when relative humidity (RH) increases. The typical interference spectrum is simulated at different RH using MATLAB. The spectral change caused by changing HSM RI and initial length are simulated simutineously, showing different influences on humidity response. To deeply investigate the influence on RH sensitivity, the typical response sensitivity curves for different HSM lengths and air-cavity lengths are simulated. The results show that the HSM is the vital factor. Short HSM length can improve the sensitivity, but for HSM RI and length the influences on sensitivity are opposite, because of the opposite spectral-shift trend. Deep discussion and an optimization method are provided to solve this problem. According to analysis, an opaque HSM is helpful to improve sensitivity. Furthermore, if using an opaque HSM, a short air cavity and long HSM length can improve the sensor's sensitivity These results provide deep understanding and some ideas for designing and optimizing highly sensitive EFPI fiber humidity sensors.

단섬유 복합체에서 탄성계수비가 내부응력에 미치는 영향 (Effects of Elastic Modulus Ratio on Internal Stresses in Short Fiber Composites)

  • 김홍건;노홍길
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.73-78
    • /
    • 2004
  • The conventional SLT(Shear Lag Theory) which has been proven that it can not provide sufficiently accurate strengthening predictions in elastic regime when the fiber aspect ratio is small. This paper is an extented work to improve it by modifying the load transfer mechanism called NSLT(New Shear Lag Theory), which takes into account the stress transfer across the fiber ends and the SCF(Stress Concentration Factor) that exists in the matrix regions near the fiber ends. The key point of the model development is to determine the major controlling factor among the material and geometrical coefficients. It is found that the most affecting factor is the fiber/matrix elastic modulus ratio. It is also found that the proposed model gives a good result that has the capability to correctly predict the elastic properties such as interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.