• Title/Summary/Keyword: Short Circuit Test

Search Result 259, Processing Time 0.023 seconds

Review about test method for the full-insulation verification of circuit breaker rated on 800kV, 50kA (800kV, 50kA 차단기의 전절연 검증을 위한 시험방법 검토)

  • Park, Seung-Jae;Suh, Yoon-Taek;Yoon, Hack-Dong;Kim, Yong-Sik;Kim, Maeng-Hyun;Koh, Heui-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.569-571
    • /
    • 2005
  • In case of dead-tank circuit breaker with the earthed enclosure, the dielectric performance for phase to ground should be verified under the hot-gas condition produced by the current interruption. This test condition is required in breaking test duties with the rated short-circuit current and rated voltage. And, KERI has completed the reinforcement of the synthetic testing facilities and these facilities have the testing capacity which enables the full-pole testing for 800kV circuit breaker by adopting the series voltage injection method. So, this paper introduced the test circuit and procedures about the full-pole and the multi-part testing method which was devised to estimate the full -insulation of phase-to-ground for the multi-pole and dead-tank circuit breaker.

  • PDF

SiC MOSFET Compared to Si Power Devices during Short Circuit Test (실리콘 카바이드와 실리콘 MOSFET의 단락회로 특성비교)

  • Nguyen, Thanh That;Ashraf, Ahmed;Park, Joung Hu
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.89-90
    • /
    • 2013
  • Higher power density, higher operational temperature, lower on state resistance and higher switching frequency capabilities of Silicon Carbide (SiC) technology devices compared to Silicon (Si) devices makes it has higher promising market. One of the most developed SiC devices is the power MOSFET. This study tests the SiC MOSFET under short circuit conditions taking into account the effect of gate voltage characteristics. The results will be compared to IGBT and MOSFET Si devices with similar ratings. A tester circuit was designed to perform the short circuit operation.

  • PDF

Characteristics of the Phase Difference Between Arc-current and Magnetic Field Due to the Shape Variation of the Short-Circuit Ring of the Driving Coil (구동코일의 단락환 형상변경에 따른 아크전류와 자속간의 위상차 특성)

  • Chong, J.K.;Park, K.Y.;Shin, Y.J.;Jo, H.H.;Choi, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.34-36
    • /
    • 1998
  • In these days the hybrid interrupters are widely used for medium voltage class circuit breakers. In the design of the hybrid interrupter, the shape of the short-circuit ring is one of the most important design parameters. Recently the investigation into the phase difference between arc current and magnetic field due to the shape variation of the short circuit ring has been conducted. In this paper, the results of eddy current analyses in the hybrid interrupter and test result are presented.

  • PDF

The Design and Fabrication of an Electronic Ballast for High Intensity Short-Arc Lamps (고휘도 Short-Arc 램프용 전자식 안정기 설계 및 제작)

  • Kim, Il-Kwon;Park, Dae-Won;Lee, Sung-Geun;Kil, Gyung-Suk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.304-309
    • /
    • 2005
  • This paper presents an electronic ballast using a step down converter, a low frequency inverter for high intensity short-arc discharge lamp. The proposed ballast is composed of a full-wave rectifier, a step down converter operated as a current source with power regulation and a low frequency inverter with external ignition circuit. The ignition circuit generates high voltage pulse of $3{\sim}5[kV]$ peak, 130[Hz] periodically. Moreover, it is able to reignite at regular intervals by protective circuit. As experimental results on the test, acoustic resonance phenomenon is eliminated by operating the low frequency square wave voltage and current. Lamp voltage, current and consumption power are measured 123.8[V], 8.1[A] and 1,002[W], respectively. It was confirmed that the designed ballast operate the lamp with a constant power.

  • PDF

Short-circuit Analysis of Solenoid and Pancake Type Bifilar Winding Magnets using BSCCO tape

  • Park Dong Keun;Ahn Min Cheol;Yang Seong Eun;Yoon Il Gu;Kim Young Jae;Ko Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.28-31
    • /
    • 2005
  • To verify the feasibility of bifilar winding type superconducting fault current limiter (SFCL) using BSCCO tape, two types of magnets were fabricated and tested by short-circuit in this research. Even if the FCL using high Tc superconducting (HTS) tape has zero resistance in normal state, it needs to be wound as a bifilar winding for zero inductance. Solenoid type and pancake type bifilar winding magnets are designed and fabricated with the same length of BSCCO tape. The test system consists of AC power supply, transformer, fault switch, load and bifilar winding magnet. The applied AC voltages during fault duration, 0.1s, were from 0.5V to 20V. The test results without bifilar winding magnet were compared with those with each type magnets. The test results include voltage against magnet, transport current and generated resistance curve. Thermal stability, the recovery time, was studied from the results of two type magnets. The pancake type was the most effective to limit fault current but the solenoid type was thermally the most stable. From this research, short-circuit characteristics of the two types were obtained.

A study on the fault analysis of CMOS logic circuit using IDDQ testing technique (IDDQ 테스트 방식을 이용한 CMOS 논리회로의 고장분석에 관한 연구)

  • Han, Seok-Bung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.1-9
    • /
    • 1994
  • This paper analyzes the faults and their mechanism of CMOS ICs using IDDQ testing technique and evalutes the reliability of the chips that fail this test. It is implemented by the three testing phases, initial test, burn-in and life test. Each testing phase includes the parametric test, functional test, IDDQ test and propagation delay test. It is shown that the short faults such as gate-oxide short, bridging can be only detected by IDDQ testing technique and the number of test patterns for this test technique is very few. After first burn-in, the IDDQ of some test chips is decreased, which is increased in conventional studies and in subsequent burn-in, the IDDQ of all test chips is stabilized. It is verified that the resistive short faults exist in the test chips and it is deteriorated with time and causes the logic fault. Also, the new testing technique which can easily detect the rsistive short fault is proposed.

  • PDF

Test of an High Temperature Superconducting Power Transformer (고온초전도변압기의 특성시험)

  • Lee, Hui-Jun;Cha, Gwi-Su;Lee, Ji-Gwang;Kim, U-Seok;Han, Song-Yeop;Ryu, Gyeong-U;Choe, Gyeong-Dal
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.572-577
    • /
    • 2000
  • This paper describes the test results of a single phase 3kVA high temperature superconducting power transformer. The tapes are made with Bi-2223 and have silver alloy as the matrix. Four double pancake windings are used. Among them two double pancake windings are connected in series for high voltage winding and the others are connected in parallel for low voltage winding. The rated voltage and current of primary winding and secondary winding are 220/110V. 13.7/27.3A. Fundamental characteristics are obtained through short circuit and no load test. The over load capability and characteristics are investigated.

  • PDF

A Study on the Construction of Test circuit and Unification of Experiment Method for High Voltage Gas-insulated Load Switch using High Power Testing System (특고압 가스 절연 부하 개폐기의 통합형 대전력 시험 방법 및 회로 구성에 관한 연구)

  • Jung, Heung-Soo;Kim, Min-Young;Kim, Juen-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.36-46
    • /
    • 2008
  • This paper is to study on the Construction of Test circuit and Unification of Experiment Method for high voltage gas-insulated load switch using high power testing system The high power testing system is a equipment to verify electrical and mechanical performance on electrical product. The system consist of short-circuit generator, back-up breaker, making switch, impedance, high voltage transformer, low voltage transformer, measuring and protection system, etc. Using this system, we can test related to high power, for example, short-time current test, active load Current test, magnetizing Current test, capacitive current test, closed loop current test, etc. Standards of high voltage gas-insulated load switch that is in use domestic distribution line are ES 5925-0002, IEC 60265-1, IEC 62271-1 and IEEE C 37.74, etc. In this paper, we standardized on the test procedure, organization of test circuit and analysis of measured data prescribed many difference standards, and applied this test method to 600[MVA] high power testing system. So that we can test the load switch satisfied standards.

A Study On The Arc Resistance of $SF_6$ Gas Circuit Breaker ($SF_6$ 가스차단기의 아크저항에 관한 연구)

  • Chong, Jin-Kyo;Lee, Woo-Young;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1566-1570
    • /
    • 2007
  • [ $SF_6$ ] gas circuit breakers are widely used for short circuit current interruption in EHV(Extra High Voltage) or UHV(Ultra High Voltage) power systems. To develop $SF_6$ gas circuit breakers, the arc resistance value is necessary to compare experimental results to numerical ones. The arc resistance value can be obtained from a breaking test with a $SF_6$ gas circuit breaker. The direct testing or synthetic testing facility is widely used to verify the breaking ability for $SF_6$ gas circuit breakers. We employed the simplified synthetic testing facility to test a $SF_6$ gas circuit breaker prototype. The arc resistance characteristic was measured and calculated under the various experimental conditions. This arc resistance value can be used for verifying the numerical results from arc simulation in a circuit breakers.

Simplified Synthetic Testing Facility with Modified TRV Circuit

  • Chong, Jin-Kyo;Lee, Kyung Seob;Lee, Chang-Hoon;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.881-885
    • /
    • 2018
  • In order to develop a gas circuit breaker (GCB), the breaking performance of the short line fault (SLF) should be prioritized over that of the breaker terminal fault (BTF). In brief, it is necessary to evaluate the thermal characteristics of the insulating gas that is filled in a GCB. In the process of developing a GCB, many companies use the simplified synthetic testing facility (SSTF).In order to evaluate the SLF breaking performance of a GCB with a long minimum arcing time, a modifications to the conventional SSTF was proposed. In this study, we developed the SSTF with a modified transient recovery voltage circuit. The performance of the newly developed SSTF was verified by an $L_{90}$ breaking performance test on a rating combination of 170 kV, 50 kA, and 60 Hz.