• Title/Summary/Keyword: Shooting Distance

Search Result 62, Processing Time 0.031 seconds

Shooting Distance Adaptive Pore Extraction for Skin Condition Estimation (피부 상태 추정을 위한 촬영 거리에 적응적인 모공 검출 연구)

  • Lee, Kang-Kyu;Yoo, Jun-Sang;Bae, Jin-Gon;Bae, Ji-Sang;Kim, Jong-Ok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.106-114
    • /
    • 2015
  • Nowadays, cameras embedded in smartphones can take high resolution photographs that can be used to analyze skin conditions without using specialized equipments. In shooting photographs with a smartphone, it is difficult to maintain a uniform shooting distance. Therefore, it is essential to adapt a skin analysis method to the shooting distance. In this paper, we focus on a pore detection algorithm that is adaptive to the camera distance. We develop a relationship model between the shooting distance and the appropriate size of the pore detection mask. In addition, we propose a method to estimate the normalized pore size (i. e. pore size at a standard shooting distance). We conducted experiments on skin images taken from different shooting distances. It was verified that the proposed method can achieve more accurate pore detection result, close to those from skin images taken at a standard shooting distance.

Development and Evaluation Archery Posture Analysis System using Inertial Sensor (관성센서를 이용한 양궁자세 분석 시스템 구축 및 평가)

  • Cho, WooHyeong;Quan, Cheng-Hao;Kwon, Jang-Woo;Lee, Sangmin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1746-1754
    • /
    • 2016
  • In this paper, we provide a development and evaluation method for an archery posture analyzing system, using an inertial sensor. The system was developed using LabVIEW2014 by National Instruments and evaluated using the DTW algorithm. To convert the voltage value of the inertial sensor into a physical value, a coordinate transformation matrix bias was applied. To evaluate the similarity of movement in archery shooting, the DTW distance was calculated and similarity was confirmed based on simple mechanical movement, the same person's shooting movement, shooting movement with another person, and the noise signal. The average similarity comparison results were as follows: simple mechanical movement was 17.05%, the same person's shooting movement was 26.48%, shooting movement with another person was 62.8%, and the noise signal was 328.5%; a smaller value indicates a higher level of similarity. We confirmed the possibility of analyzing the archery posture using 3-axis acceleration of the inertial sensor. We inferred that the proposed method might be important means for assessing shooting skills, evaluation of archer's progress, and finding talented archers in advance.

Capturing Distance Parameters Using a Laser Sensor in a Stereoscopic 3D Camera Rig System

  • Chung, Wan-Young;Ilham, Julian;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.387-392
    • /
    • 2013
  • Camera rigs for shooting 3D video are classified as manual, motorized, or fully automatic. Even in an automatic camera rig, the process of Stereoscopic 3D (S3D) video capture is very complex and time-consuming. One of the key time-consuming operations is capturing the distance parameters, which are near distance, far distance, and convergence distance. Traditionally these distances are measured by tape measure or triangular indirect measurement methods. These two methods consume a long time for every scene in shot. In our study, a compact laser distance sensing system with long range distance sensitivity is developed. The system is small enough to be installed on top of a camera and the measuring accuracy is within 2% even at a range of 50 m. The shooting time of an automatic camera rig equipped with the laser distance sensing system can be reduced significantly to less than a minute.

The Effects of Roll Misalignment Errors, Shooting Distance, and Vergence Condition of 3D Camera on 3D Visual Fatigue (시각피로 모형: 카메라의 회전오차, 촬영 거리, 수렴 조건이 입체 시각피로에 미치는 영향)

  • Li, Hyung-Chul O.;Park, JongJin;Kim, ShinWoo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.589-598
    • /
    • 2013
  • In order to understand 3D visual fatigue, it is necessary to examine the visual fatigue induced by camera parameters as well as that induced by a pre-existing 3D content. In the present study, we examined the effects of camera parameters, such as roll misalignment error, shooting distance and vergence condition on 3D visual fatigue and we modelled it. The results indicate that roll misalignment error, shooting distance and vergence condition affect 3D visual fatigue and the effect of roll misalignment error on 3D visual fatigue is evident specifically when screen disparity is relatively small.

Measurement of Noise and Evaluation of Noise Control Methods for Military Rifle Shooting Ranges (군 소화기 사격장 소음측정 및 소음저감 방안 평가)

  • Lee, Sang-Woo;Kim, Hee-Seok;Jeong, Sang-Jo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.123-132
    • /
    • 2009
  • Civil petitions and law suits against the military rifle shooting noise have been increased because many military shooting ranges are located near civilian residential area. In order to solve the noise problems, military have devised various methods. In this study, propagation properties of rifle shot through atmosphere were investigated. The military rifle shooting noise level at 5m from muzzle was between $l14{\sim}120dB$ in all directions. The noise level loom both backward and sideward away from system firing range consisting lines of 8 shooting locations were 90dB, when shots were all fired within 10 seconds. At present some of military bases established sound barriers, muzzle enclosures, silencers, and indoor shooting ranges to reduce noises and these prevention methods can reduce noise by $5{\sim}20dB,\;5{\sim}9dB,\;5{\sim}13dB,\;40{\sim}50dB$, respectively. Even though indoor shooting range has the best performance, it requires very expensive construction cost and has short length between target and shooter. In comparison, muzzle enclosure is cheap, but because it is installed in fixed position it can only be used in one shooting position. Therefore a commander should select appropriate methods to reduce military rifle shooting noise considering distance from residential area to the range, mission of military training, budget, etc.

Effects of pelvic stability on instep shooting speed and accuracy in junior soccer players

  • Sung, Ha-Rim;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.2
    • /
    • pp.78-82
    • /
    • 2018
  • Objective: The purpose of this study was to determine the effect of wearing a pelvic compression belt on ball speed and accuracy in instep shoots of youth soccer players. Design: Randomized cross-over design. Methods: We included 20 male junior soccer players with experience of more than 5 years. Participants were randomly assigned to two conditions: application of a pelvic compression belt and instep shooting or no application. Instep shooting was performed three times at a distance of 20 meters from the position of the goal post, and the ball speed was measured using a speed gun at a position 5 meters behind the goal post. The shooting accuracy was measured based on a 5-point scale. The shooting accuracy was measured by scoring 5 points at 2.44 meters in the middle of the goal area of area A, 3 points at 2.44 meters in the goal area of area B, and 0 in the case of shooting outside the goal area C. Results: After applying a pelvic compression belt, the mean speed of the ball was significantly increased (p<0.05). The maximum speed of the ball was significantly increased (p<0.05). The accuracy of the ball was significantly increased (p<0.05). Conclusions: Through this study, we expect that the use of the pelvic compression belt can be applied as a training method to improve the shooting ability of soccer players. Clinically, pelvic compression belts are expected to help rehabilitation soccer players to improve their shooting accuracy.

The Kinematical Analysis between the Skilled and the Unskilled for Air Pistol Shooting Posture (공기권총 사격 자세에 대한 우수선수와 비우수선수간의 운동학적 분석)

  • Kim, You-Mi;Kim, Kab-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.509-517
    • /
    • 2009
  • The purpose of this study was to investigate the effective posture for air pistol shooting. Participants were 3 male athletes of shooting with at least five years of experience and another group of 3 males athletes with less than three years of experience. For the purpose, the shooting motion was analysed using three dimensional image technology. Data from each event for the two groups, competent and less competent ones, were compared to see the differences from the kinematical point of view. Time of period in competent group was longer than less competent group during the shooting posture. Displacement of center of mass and pistol about medial/lateral and antero/posterior in competent group was little than less competent group from aim to shooting. And these result were effect to the velocity. Distance and time in competent group within coaching machine were smaller than less competent group. To the result, it was appear that precision of aim in competent group was higher than less competent group.

Large deflection of simple variable-arc-length beam subjected to a point load

  • Chucheepsakul, S.;Thepphitak, G.;Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.49-59
    • /
    • 1996
  • This paper considers large deflection problem of a simply supported beam with variable are length subjected to a point load. The beam has one of its ends hinged and at a fixed distance from this end propped by a frictionless support over which the beam can slide freely. This highly nonlinear flexural problem is solved by elliptic-integral method and shooting-optimization technique, thereby providing independent checks on the new solutions. Because the beam can slide freely over the frictionless support, there is a maximum or critical load which the beam can carry and it is dependent on the position of the load. Interestingly, two possible equilibrium configurations can be obtained for a given load magnitude which is less than the critical value. The maximum arc-length was found to be equal to about 2.19 times the fixed distance between the supports and this value is independent of the load position.

A New Locomotor Evaluation System for Mouses Based on Continuous Shooting Images (연속 촬영 이미지를 이용한 Mouse의 운동 능력 평가 시스템)

  • Kwak, Ho-Young;Huh, Jisoon;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.153-161
    • /
    • 2015
  • In this paper, we propose a locomotor evaluation System for mouse based on continuous shooting images. In the field of veterinary medicine and animal studies are subjected to using the mouse for the quality of human life. In particular, during the experiments using the artificially created mice injury, through a variety of scoring and a lot of experiments to measure the extent of recovery from the injury. The traditional method of measuring the quantity of exercise while in this experiment was made of a method for directly observing person. The proposed system performs the continuous shooting per unit of time specified by the movement of the mouse is extracted from a continuous image shooting with the outline of a mouse point cloud. And using the extracted point cloud to extract again the inner contour of the body of the mouse. So using the new point cloud obtained its center, Then, using the center point calculated by accumulating the distance between two points on locomotor evaluation system design and implement to obtain the total distance the mouse moves over a unit of time.

Improvement Method and Experiment Analysis of Sniper Distance Estimation Using Linear Microphone Array (선형마이크로폰 어레이를 이용한 저격수 거리추정 개선방법과 실험 분석)

  • Jung, Seungwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.447-455
    • /
    • 2018
  • If a hidden enemy is shooting, there is a threat against soldiers in recent conflicts. This paper aims to improve the localization of a muzzle using microphone array. Gunshot noise can provide information about the location of muzzle with two signals, the muzzle blast from the gun barrel and the projectile sound from the bullet. Two signals arrive to the microphone array with different arrival time and angle. If the arrival angles of the two signals are estimated, distance between sniper location and the microphone array can be calculated by using geometric principles. This method was established in 2003 by Pare. But this method has a limitation that it cannot calculate the distance when the arrival angles of the two signals are same. Also it has an error when the angle difference of arrival is small. In order to overcome this limitation, a new method is proposed that uses the change of characteristic of the projectile sound with respect to vertical distance from the trajectory. The proposed method estimates the distance correctly when the arrival angle of two signals are same, and when the angle difference between two signals is increased, the estimation error increases with respect to the angle. Therefore these two methods can be selected according to the angle difference between two signals to estimate the distance of the muzzle. Below the threshold of the angle difference, the proposed method can be used to estimate distance with smaller error than the existing method. This was demonstrated by shooting tests using actual sniper rifles.