A fungal strain of Trichoderma having strong chitinolytic activity was isolated from field soil enriched with crabshell for several years. Based on 5.8S rRNA, partial 18S, 28S rRNA genes, ITS1, ITS2 sequence analysis and morphological characteristics, the fungus was identified as Trichoderma asperellum and named as Trichoderma asperellum T-5 (TaT-5). The fungus released lytic enzymes such as chitinase and ${\beta}$-1, 3-glucanse, and produced six antifungal substances in chitin broth medium. To demonstrate the protective effect of TaT-5 against damping-off in cucumber plant caused by Rhizoctonia solani, TaT-5 culture broth (TA), chitin medium (CM) and distilled water (DW) were applied to each pot at 10 days after sowing, respectively. Then, the homogenized hyphae of R. solani were infected to each pot at 1 week after TaT-5 inoculation. During experimental period, fresh weight of shoot and root in cucumber plant more increased at TA treatment compared to other treatments. PR-proteins (${\beta}$-1, 3-glucanase and chitinase) activities in cucumber leaves markedly increased at CM and DW treatments, but the activity slightly increased and then decreased at TA treatment at 3 days after infection of R. solani. The activity of PR-proteins activities in cucumber roots at all treatments decreased with time where the degree of decrement was more alleviated at TA treatment than CM and DW. These results suggest that the lytic enzymes (chitinase and ${\beta}$-1, 3-glucanse) and antifungal substances produced by TaT-5 can reduce the pathogenic attack by R. solani in cucumber plants.
Jang, Yoonah;Lee, Hye Jin;Choi, Chang Sun;Um, Yeongcheol;Lee, Sang Gyu
Journal of Bio-Environment Control
/
v.23
no.4
/
pp.383-390
/
2014
This study was conducted to investigate the growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity (photosynthetic photon flux, PPF) and plug cell size in a closed transplant production system with artificial lighting. Cucumber scion and pumpkin rootstock seedlings were grown under the combinations of three levels of PPF (PPF 165, 248, and $313{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and five types of plug tray (50, 72, 105, 128, and 200 cells in the tray) for nine days. The shoot dry weight and relative growth rate increased with increasing PPF and plug cell size. As PPF increased, cucumber scion and pumpkin rootstock seedlings had higher dry matter, lower specific leaf area, and lower hypocotyl length. The first true leaf of cucumber scion and pumpkin rootstock unfolded at eight and seven days after sowing, respectively, except the treatment using 200-cell plug tray. The unfolding of first true leaf of seedlings grown in 200-cell plug tray was delayed by one day. Accordingly, it was considered that the use of small cell size such as 200-cell plug tray would require more time for the production of scion and rootstock. Based on the results, we suggest that cucumber scion and pumpkin rootstock be grown in 105-cell to 128-cell plug tray for eight days and 72-cell to 105-cell plug tray for seven days, respectively, when using splice grafting method with root-removed rootstock. Additionally, higher PPF is suggested to improve the growth and quality of scion and rootstock.
Half-sib seeds and one-year-old seedlings of Ginkgo biloba were treated with various simulated acid rains (pH 2.0, pH 3.0, pH 4.0 and pH 5.0) to examine the effects of acid rain on seed germination and seedling growth. The seeds were sown in a pot ($4500cm^3$) containing one of three different soils (nursery soil, mixed soil and sandy soil) and the seedlings were grown in the same pots as the seeds. Simulated acid rain was made by diluting sulfuric and nitric acid solution ($H_2SO_4$: $HNO_3$ = 3:1, V/V) with tap water and tap water (pH6.4), and treated by 5mm each time for three minutes during the growing seasons (April to October 1985 and April to August 1986). Acid rain treatments were done three times per week to potted seeds and seedlings by spraying the solutions. The seed germination, seedling growth and physiological characteristics of potted seedlings were compared among three soil types as well as among the various pH levels. The results obtained in this study were as follows: 1. Seed germination of Ginkgo biloba decreased significantly at pH 2.0 level in the field test, and also at the levels of both pH 2.0 and pH 3.0 in the laboratory test, compared to that at control. 2. For two-year-old seedlings, total, top and root dry weights per seedling were significantly different among the three soil types and among the levels of pH, and shoot growth was different only among the levels of pH. 3. For one-year-old seedlings, height and total and stem-branch dry weights per seedling were significantly different among the levels of pH.
This study was carried out to determine the effects of environment controls (temperature and shading level) on germination responses and early growth of Allium thunbergii. Germination experiment was performed by pre-treatment (with low temperature and wetting treatments for 0, 20, 40 and 60 days) and temperature controls (5, 10, 15, 20, 25 and 30). And growth experiment was performed by containers (128 and 200 cavities containers) and shading level (full sunlight (control), 35%, 50% and 75% shading). Germination rate of A. thunbergii seeds were, 20 days of seed pre-treatment, the highest at $10^{\circ}C$ (81.7%) and the more temperature went up, the more germination rate went down. As a result of surveying container and shading treatments, the height, leaf area, leaf length, leaf aspect ratio (L/W) were higher under 50% shading of 128 (24.2cm, $2.76cm^2$, 22.3cm and 223.4, respectively) and 200 (22.6cm, $2.29cm^2$, 19.4cm and 190.5, respectively) cavities container. The root was grown well under full sunlight. Specially, fresh weight of shoot (leaves+stem) was higher under 50% shading of 128 (0.241g) and 200 (0.212g) cavities container. As a result of surveying the whole experiment, A. thunbergii seeds need to pre-treatment (with low temperature and wetting treatments for 20~40 days) for high germination rate. And it is judged better growth and higher yield by maintaining 50% shading of 200 cavities container.
Inappropriate storage of fresh-cut onions may result in losses of good quality. To understand storage conditions for shelf-life and quality of fresh-cut onions, The effect of packing type and storage temperature on the quality of fresh-cut onions was evaluated. Onions stored at $0^{\circ}C$ for 2 months were peeled off after removing root and shoot parts. Each three peeled onions were packed in a polyethylene film (PE, $50{\mu}m$) or in a polyethylene/polypropylene film (PE/PP, $100{\mu}m$) with vacuum treatment (70 cmHg) and stored at different temperatures (4, and $10^{\circ}C$) for 21 days. The following analyses were examined to evaluate the quality of fresh-cut onions: microbial population, surface color, titratable acidity and pH, respiration rate, and sensory quality. Fresh-cut onions stored at $4^{\circ}C$ showed less aerobic and coliform bacterial population than those stored at $10^{\circ}C$ during observation periods. Fungal populations of fresh-cut onions packed in PE film stored at $10^{\circ}C$ increased significantly after 13 days. E. coli was not detected in all treatments during whole storage periods. Surface colors of fresh-cut onions were not affected by packing type and storage temperature, however, color difference (${\Delta}E$) of fresh-cut onions in PE/PP film stored at $10^{\circ}C$ was significantly higher than those of other treatments. Titratable acidity of fresh-cut onions was not affected by packing type and storage temperature. However, pH of fresh-cut onions packed in PE film stored at $10^{\circ}C$ increased gradually over the whole storage period. Fresh-cut onions packed in PE film showed higher $CO_2$ and less $O_2$ concentrations at $10^{\circ}C$ than those at $4^{\circ}C$. The sensory quality of fresh-cut onions was significantly affected by packing type and storage temperature after 13 days. Particularly, vacuum treatment in PE/PP film showed better sensory quality than that of PE film package at the same storage temperature. It was concluded that vacuum treatment and storage at $4^{\circ}C$ could be effective to prolong the quality of fresh-cut onions up to 21 days.
Uniform scions and rootstocks should be produced to ensure grafting success. Light quality is an important environmental factor that regulates seedling growth. The effects of warm- and cool-white light emitting diode (LED) ratios on seedling growth were investigated. Scions and rootstocks of cucumber, tomato, and watermelon were grown in a closed transplant production system using LED as the sole lighting source. The LED treatments were W1C0 (only warm-white), W1C1 (warm-white: cool-white = 1:1), W3C1 (warm-white: cool-white = 3:1), and W5C2 (warm-white: cool-white = 5:2). The seedlings grown in W1C1 had the shortest hypocotyls, and the seedlings grown in W1C0 had the longest hypocotyls among the three tested vegetables. The hypocotyls of watermelon scions, watermelon rootstocks, and tomato rootstocks were shortest in W1C1, followed by those in W3C1, W5C2, and W1C0, but there was no significant difference between W3C1 and W5C2, which remained the same as the ratio of cool-white LEDs increased. In addition, tomato scions had the first and second longest hypocotyls in W1C0 and W3C1, respectively, and the shortest hypocotyls in W5C2 and W1C1, along with W5C2 and W1C1, although the difference was not significant. The stem diameter was highest in W1C0 except for tomato seedlings and rootstocks of watermelon. The shoot fresh weight of scions and rootstocks of cucumber and watermelon and the root fresh weight of cucumber scions were lowest in W1C1. These results indicated that different ratios of LED lighting sources had a strong effect on the hypocotyl elongation of seedlings.
Tomatoes are flooded differently 0, 5, 10 and 15cm, according to the developing stages such as flowering stage under the condition of greenhouse. Along with this, they are treated according to the time condition such as 6, 12, 24, 48 and 120 hours. The results obtained are summarized as follows. Plant height decreased in the depth of $0{\sim}10cm$ for over 48 hours, in the depth of 15cm for over 24 hours. Number of leaves was the same as in control, and it decreased over. Number of flowers and fruit setting of individuals decreased conspicuously according as the depth and the hours got greater and longer. Adventitious root occurred remarkably in the depth of $0{\sim}10cm$, for over 24 hours and in the depth of 15cm, 12 hours. Epinastic curvature increased greatly as the depth and the hours got greater and longer. Diffusion resistance of stomata cell increased as the depth and the hours got greater and longer. Diseases occurred conspicuously as the hours of flooding got longer rather than as the depth greater. The preventing of diseases caused by insecticide was observed, but it was not greater than in the seedling and transplanting stage. Fertilization was effective in the case of increasing the weight of shoot. Number of fruits per plant did not decrease in the depth of 0cm up to 24 hours, but decreased on the deeper level of flooding and increased as the hours got longer. Moreover with the exception of 120 hours per respective depth of the treatment, average weight of a fruit got greater as the depth and the hours got greater and longer. In the case of epinastic curvature and diffusion resistance, there was negative correlation between all the other investigated characters and positive correlation between weight of a fruits and average weight of a fruit.
This study aimed to investigate the nutrient solution developed by based on nutrient-water absorption rate of strawberry 'Maehyang' by comparing growth and yield for 8 months with 5 kinds of nutrient solution with different ion composition. Strawberry plants were planted at elevated bed and supplied with five kinds of nutrient solutions (RDA), Yamazaki, PBG, University of Seoul (UOS) and NewUOS from one month onwards. Five types of nutrient solution were supplied to the strawberry plants associated with EC $1.0dS{\cdot}m^{-1}$, pH 6.0, $150{\sim}300mL{\cdot}plant^{-1}$ per day. At 60 days after planting, leaf width and leaf petiole of the strawberry plants showed significant differences among nutrient solution types and photosynthesis was higher in RDA and NewUOS nutrient solution and lower in PBG nutrient solution. The EC of the drainage on vegetative growth stage was $0.7{\sim}0.8dS{\cdot}m^{-1}$, which is lower than the supplied EC level, and to $1.0-1.2dS{\cdot}m^{-1}$, afterwards. The pH of the drainage was higher in Yamzaki solution as 6.2~6.8, while the pH of the UOS nutrient solution was lower in 5.1~5.2. Nitrate content was most absorbed in vegetative growth stage and after flower clusters development. The potassium uptake was highest at the NewUOS followed by UOS and Yamazaki nutrient solution. At six months after -planting fresh weight and dry weight of shoot and root were higher in UOS and NewUOS nutrient solution than other nutrient solutions, and the dry matter ratio was lower at 43.5% in Yamazaki nutrient solution and 30.6% in NewUOS nutrient solution than other solutions. Length, width, weight, and sugar content of the strawberries harvested from December to February were unaffected by treatment, but yield was higher in NewUOS nutrient solution due to increasing fruit number and average weight. From March to May, number of fruit was higher in Yamazaki nutrient solution. In conclusion, there was no difference in the growth of 'Maehyang' when 5 nutrient solutions were grown under hydroponics. But in order to improve the marketability, the NewUOS nutrient solution is appropriate to use from planting to February and it is suitable to use Yamazaki nutrient solution after March when temperature is high and the amount of fruit set per inflorescence.
Seo, Kyung-Won;Kim, Rae-Hyun;Koo, Jin-Woo;Noh, Nam-Jin;Kyung, Ji-Hyun;Kim, Jeong-Gyu;Son, Yo-Whan
Korean Journal of Environmental Agriculture
/
v.25
no.1
/
pp.47-57
/
2006
This study was carried out to select the Eco-tree for successful phytoremediation of abandoned metalliferous mines. We examined vegetation and heavy metal concentrations of woody plants in abandoned mining areas, and also conducted seed germination and seedling growth experiment on contaminated soils from Gahak and Geumjeong mines. Pinus densiflora, Robinia pseudoacacia, Lespedeza bicolor and Alnus japonica showed high frequency in the survey areas and had high heavy metal concentrations compared to other species. Heavy metal concentrations were higher in roots than in leaves and stems. The seed germination rate was in the order of P. densiflora, L. bicolor, R. pseudoacacia, and Alnus japonica from the incubactor and greenhouse experiment. In the incubator experiment germination rate was highest in the control soil for P. densiflora and A. japonica. Germination rate of P. densiflora was highest on the 100% contaminated soil for Gahak mine while germination rate decreased with increased percentage of contaminated soil for Geumjeong mine. In the greenhouse experiment germination rate was lowest on the 40% contaminated soil for Gahak mine while germination rate was lowest on the 20% contaminated soil for Geumjeong mine and increased with increased percentage of contaminated soil. Shoot growth was highest for L. bicolor while root growth was highest for R. pseudoacacia except for 20% contaminated soil in Geumjeong mine.
Buffalograss is an important turfgrass species with excellent cold, heat, and drought tolerance. Understanding the physiological integration of buffalograss under heterogeneous conditions helps to develop cultural practices that better use limited resources for uniform turf quality. The objective of this study was to evaluate physiological integration of buffalograss under water deficit stress and the involvement of lipid peroxidation and antioxidants in the process. In one experiment, buffalograss was planted in the center of a four-compartment growth unit. Watering frequencies, once a week(+) and once in two weeks(-), were combined with the sand(S) or peat(P) in each unit to generate five total treatments(P+S-P-S+, P+P+P+P+, S-S-S-S-, P-P-P-P-, and S+S+S+S+). The average number of shoot established from the heterogeneous root-zone medium was higher than the average of four possible homogeneous media. In second experiment, single ramet in Hoagland solution($S_0$) or single ramet in Hoagland solution with 20% PEG-6000($S_s$) were compared with two connectedramets under different treatments. Treatments for connected ramets were young ramet in Hoagland solution($Y_{os}$) and old ramet in Hoagland solution with 20% PEG-6000($O_{os}$), and old ramet in Hoagland solution($O_{ys}$) and young ramet in Hoagland solution with 20% PEG-6000($Y_{ys}$). Lipid peroxidation, antioxidants, and proline showedphysiological integration between ramets subjected to different levels of water stress. Superoxide dismutase(SOD), Guaiacol peroxidase(G-POD), malondialdehyde(MDA), and free proline also showed different time courses and relative activities during the physiological integration.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.