• 제목/요약/키워드: Shoe cushioning system

검색결과 5건 처리시간 0.018초

나노입자 유체댐퍼를 이용한 보행 충격 완화 장치의 충격 흡수에 대한 실험적 연구 (Experimental Study of Shoe Cushioning System of Shock Absorption Using Fluid Damper with Nano Particles)

  • 문병영
    • 유공압시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.14-20
    • /
    • 2005
  • This study developed and evaluated a shoe cushioning system to reduce impact force patterns during running. The shoe cushioning system is composed with a poly urethane pocket, which contains water and porous grains to absorb the force against the weight inside the pocket. Load-displacement curves for the shoe cushioning system were obtained from an instrumented testing machine and the results were compared with various pockets that have air, water or grains. Mechanical testings showed that the pocket with 5 g particles was the best for the shoe cushioning system. This founding will be helpful to designing the shoe.

  • PDF

신발의 보행 충격 완화 장치에 대한 충격 흡수력의 실험적 평가 (Experimental Study of Evaluating Shoe Cushioning System Using Shock Absorption Pocket)

  • 선창화;손권;문병영
    • 대한기계학회논문집A
    • /
    • 제30권3호
    • /
    • pp.241-248
    • /
    • 2006
  • Shoe cushioning systems are important to prevent body injuries. This study developed and evaluated a cushioning system to reduce impact force on the heel. The cushioning system suggested consist of a polyurethane pocket, which contains water and porous grains of open cell to dissipate the energy effectively. Load-displacement curves fer the shoe cushioning system were obtained from an instrumented testing machine and the results were compared with various pockets with air, water or grains. Mechanical testings showed that the pocket with 5g porous grain was the best for the cushioning system. This system can be applied to the design of various kind of sport shoes.

달리기시 쿠션형과 모션컨트롤형 런닝화 착용에 따른 생체역학적 비교 (A Biomechanical Comparison of Cushioning and Motion Control Shoes During Running)

  • 이기광
    • 한국운동역학회지
    • /
    • 제15권3호
    • /
    • pp.1-7
    • /
    • 2005
  • Excessive pronation and impact force during running are related to various running injuries. To prevent these injuries, three type of running shoes are used, such as cushioning, stability, and motion control. Although there were may studies about the effect of midsole hardness on impact force, no study to investigate biomechanical effect of motion control running shoes. The purpose of this study was to determine biomechanical difference between cushioning and motion control shoes during treadmill running. Specifically, plantar and rearfoot motion, impact force and loading rate, and insole pressure distribution were quantified and compared. Twenty male healthy runners experienced at treadmill running participated in this study. When they ran on treadmill at 3.83 m/s. Kinematic data were collected using a Motion Analysis eight video camera system at 240 Hz. Impact force and pressure distribution data under the heel of right foot were collected with a Pedar pressure insole system with 26 sensors at 360 Hz. Mean value of ten consecutive steps was calculated for kinematics and kinetics. A dependent paired t-test was used to compare the running shoes effect (p=0.05). For most kinematics, motion control running shoes reduced the range of rearfoot motion compared to cushioning shoes. Runners wearing motion control shoe showed less eversion angle during standing less inversion angle at heel strike, and slower eversion velocity. For kinetics, cushioning shoes has the effect to reduce impact on foot obviously. Runners wearing cushioning shoes showed less impact force and loading rate, and less peak insole pressure. For both shoes, there was greater load on the medial part of heel compared to lateral part. For pressure distribution, runners with cushioning shoes showed lower, especially on the medial heel.

트레드밀 달리기시 신발 내부의 부하에 관한 연구 (In-shoe Loads during Treadmill Running)

  • 이기광
    • 한국운동역학회지
    • /
    • 제14권2호
    • /
    • pp.105-119
    • /
    • 2004
  • To enhance our understanding of the loads on the foot during treadmill running, we have used a pressure-sensitive insole system to determine pressure, rate of loading and impulse distributions on the plantar surface during treadmill running, both in minimally cushioned footwear and in cushioned shoes. This report includes pressure, rate of loading, impulse and contact time data from a study of ten subjects running on a treadmill at 4.0m/s. Among heel-toe runners, the highest peak pressures and highest rates of loading were observed under the centre of the heel and in the medial forefoot. The arch regions were only lightly loaded. Contact time was greater in the forefoot than in the heel. Two-thirds of the impulse recorded during the step was the result of forces applied through the forefoot, mostly in the region of the metatarsal heads. The distribution of loads in the shoe suggests that the load distributing properties of the cushioning system are most important in the centre of the heel, under the metatarsal heads and great toe. Shock attenuation is primarily required under the centre of the heel and to lesser extent under the metatarsal heads. Some energy dissipation may be desirable in the heel region because it causes shock to be absorbed with less force. All the 'propulsive' effort is applied through the forefoot. Therefore, this region should as resilient as possible.

정상의 발과 병적인 발에서 발보조기 연구의 비판적 고찰 (A Critical Review of Foot Orthoses in Normal and Diseased Foot)

  • 김승재;김장환;탁계래;배상우;박영기
    • 한국운동역학회지
    • /
    • 제17권3호
    • /
    • pp.81-94
    • /
    • 2007
  • The purpose of this study was to critically review biomechanical studies on foot orthoses (FO) in normal and diseased foot and provide beneficial information obtained from researches until now and future researching focus. The search was performed by Medline and Embase database including studies published in English from January 1980 to April 2007. The searching terms were foot orthoses, foot orthotics, insoles and shoe insert. 57 studies including 54 journal articles and 3 abstracts were finally selected under the conditions of having clinical trials, FO, control condition, movement, scientific measuring system. The reviewed studies were divided into 10 categories according to subject characteristics; healthy normal, excessive pronation or flexible flat foot, rheumatoid arthritis, diabetes, medial knee osteoarthritis, forefoot varus, plantar fasciitis, patellofemoral syndrome, cavus foot and finite element model. In summary, first, soft and semirigid FOs with some degree of cushioning showed much higher comfort and efficacy than rigid FO. Second, no big differences between prefabricated and custom FO were shown. Third, the full length's FO was preferable to the half length's FO or simple arch supports. Fourth, the wearing of FO combining medial arch supports and metatarsal dome made positive roles to enhance comfort and functionality and redistribute plantar pressure under the foot. Fifth, for patients with knee-related diseases lateral wedges were preferable. Sixth, measuring systems were properly applied according to the types of foot diseases.