• Title/Summary/Keyword: Shock-tube problem

Search Result 24, Processing Time 0.021 seconds

A Calculation of 1 Dimensional Blasting Pressure Uslng the Flux-Corrected Transport Algorithm (Flux-Corrected Transport Algorithm을 적용한 1차원 발파압력산정에 관한 연구)

  • 김문겸;오금호;이필규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.76-83
    • /
    • 1995
  • Estimation of blasting behavior of explosives is prerequisite in the numerical analysis of blasting works. In this study, blasting pressure is estimated by the finite difference method using the Flux-Corrected Transport Algorithm. To formulate the behavior of blasting gas, the mass conservation equation, the moment conservation equation, the energy conservation equation and the ideal gas state equation are used. The simplified species conservation equation is included to simulate the behavior of reacting explosives. To verify the calculation, the Sod's shock tube problem, the strong shock problem and the reacting problem we used. Numerical results show that the shock wave can be captured by means of the FCT algorithm in the reacting and nonreacting states.

  • PDF

Parametric Study on Shock-Vortex Interaction (충격파-와동 간섭의 파라메터 연구)

  • Chang Keun-Shik;Chang Se-Myong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.921-926
    • /
    • 2005
  • In the idealized model problem of the interaction between a planar travelling shock and a symmetric vortex, the physics of shock distortion and quadrupole sound generation are well known to many researchers. However, the authors have distinguished the weak waves reflected and transmitted by the complicated photograph images obtained from a shock tube experiment. In this paper, we introduces a parametric study based on Navier-Stokes simulation and Rankin vortex model to see the difference of shock deformation shapes. Four combination of the strength of shock and vortex are respectively selected from a parameter plane of shock and vortex strength extended to the strong vortex region. The result shows clearly discernable wave morphology for the main parameters, which is not yet explicitly mentioned by other researchers.

Study on Analysis of Two-dimensional Compressible Waves by Lattice Boltzmann Method (격자볼츠만법을 이용한 2차원 압축성 충격파의 유동현상에 관한 수치계산)

  • Kang Ho-Keun;Ro Ki-Deok;Son Kang-Pil;Choi Min-Sun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.557-560
    • /
    • 2002
  • In this study, simulation of weak shock waves are peformed by a two-dimensional thermal fluid or compressible fluid model of the lattice Boltzmann method. The shock wave represents an abrupt change in fluids properties, in which finite variations in pressure, internal energies, and density occur over the shock thickness. The characteristics of the proposed model with a simple distribution function is verified by calculation of the sound speeds, and the shock tube problem. The reflection of a weak shock wave by wedge propagating in a channel is performed. The results agree well with those by finite difference method or by experiment. In the simulation of unsteady shock wave diffraction around a sharp corner, we show a flow field of vortical structure near the comer.

  • PDF

Numerical Analysis of a Weak Shock Wave Propagating in a Medium Using Lattice Boltzmann Method (LBM)

  • Kang, Ho-Keun;Michihisa Tsutahara;Ro, Ki-Deok;Lee, Young-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2034-2041
    • /
    • 2003
  • This study introduced a lattice Boltzmann computational scheme capable of modeling thermo hydrodynamic flows with simpler equilibrium particle distribution function compared with other models. The equilibrium particle distribution function is the local Maxwelian equilibrium function in this model, with all the constants uniquely determined. The characteristics of the proposed model is verified by calculation of the sound speeds, and the shock tube problem. In the lattice Boltzmann method, a thermal fluid or compressible fluid model simulates the reflection of a weak shock wave colliding with a sharp wedge having various angles $\theta$$\sub$w/. Theoretical results using LBM are satisfactory compared with the experimental result or the TVD.

GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW -Part II. HIGH SPEED FLOW PHENOMENA IN GAS-LIQUID TWO-PHASE MEDIA (캐비테이션 유동해석을 위한 기- 2상 국소균질 모델 -제2보: 기-액 2상 매체중의 고속유동현상)

  • Shin, B.R.;Park, S.;Rhee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.91-97
    • /
    • 2014
  • A high resolution numerical method aimed at solving cavitating flow was proposed and applied to gas-liquid two-phase shock tube problem with arbitrary void fraction. The present method with compressibility effects employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. The Jacobian matrix from the inviscid flux of constitute equation is diagonalized analytically and the speed of sound for the two-phase media is derived by eigenvalues. So that the present method is appropriate for the extension of high order upwind schemes based on the characteristic theory. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results of high speed flow phenomena such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media and some data related to computational efficiency are made. Comparisons of predicted results and solutions at isothermal condition are provided and discussed.

Pressure Wave Propagation Phenomena in Water Containing Uniformly Distributed Gas Bubbles (소량의 기포를 함유한 이상유체 내에서의 압력파의 전파현상)

  • Kim, D.-H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.23-30
    • /
    • 1989
  • Propagation phenomena of nonlinear pressure waves in a bubbly mixture are studied. The governing equations for a bubbly mixture are derived heuristically and energy equation is incorporated with other governing equations to take thermal effects into consideration inside the bubble. This non-isothermal condition of the bubble inside is especially important when high amplitude pressure waves are treated. Keller's equation is adapted for the bubble dynamics as practical problem. Some numerical simulations are carried out for the shock tube problem using a computer program based on the above model. A comparison with experimental results of Noordzij and van Wijngaarden shows that the structure of the wave in the shock tube experiment seems to be much more significantly affected 요 the complex heat transfer phenomena inside the bubbles than by the relative translational motion between bubbles and surrounding liquid.

  • PDF

Passive control of unsteady compression wave using vertical bleed ducts (수직갱을 이용한 터널내 비정상 압축파의 피동제어)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1095-1104
    • /
    • 1997
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates along the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. For the purpose of the impulsive noise reduction, the present study investigated the effect of a vertical bleed duct on the compression wave propagating into a model tunnel. Numerical results were obtained using a Piecewise Linear Method and testified by experiment of shock tube with an open end. The results showed that the vertical bleed duct reduces the maximum pressure gradient of compression wave front by about 30 percent, compared with the straight tunnel without the bleed duct. As the width of the vertical bleed duct becomes larger, reduction of the impulsive noise is expected to be greater. However the impulsive noise is independent of the height of the vertical bleed duct.

Experimental study of compression waves propagating porous walls (다공벽을 전파하는 압축파의 실험적 연구)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4036-4043
    • /
    • 1996
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates along the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. In the purpose of the impulsive noise reduction, the present study tested the effect of porous walls on the compression wave propagating into a model tunnel. Experimental results were obtained using a shock tube with an open end. The results showed that the cavity/porous wall is very effective for the compression wave with a large nonlinear effect. The porosity of 30% is most effective for attenuation and pressure gradient reduction of the compression wave front. Also the impulsive noise reduction increases with increasing the length and height of the cavity, compared with the tunnel equivalent diameter.

Development of a High Strength Manufacturing Technology for the Shock Absorber Base Assembly Using Friction Welding (마찰용접을 이용한 고강도 쇼크업소버 베이스 어셈블리의 제조 기술 개발)

  • Chung, Ho-Yeon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.90-96
    • /
    • 2011
  • The shock absorber base assembly is one of the parts in the shock absorber equipment that controls the vehicle movement. It absorbs the shock and vibration to guarantee riding stability and comfort. It demands strength, reliability and strict airtightness of the welded section because the shock absorber base assembly is a container which resists pressure and needs durability by being filled with gas and oil. However, the current engineering needs a lot of production time, has a high cost and shows a low production rate. These problem due to the eight production processes, four of which are spot welding, reinforcement welding like metal active welding (MAG), prior process of the base assembly cap and tube for precision and pressing. We will analyze the manufacturing processes of the base assembly and suggest an improved manufacturing method that uses frictional welding. The results will show that the new method of the frictional welding is better than the previous welding technique. Through the use of this concept of frictional welding, the welding conjunction will be strengthened, measurements will be more precise, and the cost and the number of processes will be reduced.