• Title/Summary/Keyword: Shock-shock interaction

Search Result 371, Processing Time 0.025 seconds

An Experimental Study of Shock Wave Effects on the Model Scramjet Combustor (모델 스크램제트 연소기에서 충격파 영향에 대한 실험적 연구)

  • 허환일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.65-71
    • /
    • 1999
  • An experimental study was carried out in order to investigate the effect of shock waves on the supersonic hydrogen-air jet flames stabilized in the Mach 2.5 model scramjet combustor. This experiment was the first reacting flow experiment interacting with shock waves. Two identical $10^{\cire}$ wedges were mounted on the diverging sidewalls of the combustor in order to produce oblique shock waves that interacted with the flame. Schlieren visualization pictures, wall static pressures, and combustion efficiency at two different air stagnation temperatures were measured and compared to corresponding flames without shock wave-flame interaction. It was observed that shock waves significantly altered the shape of supersonic jet flames, but had different effects on combustion efficiency depending on air temperatures. At the higher air stagnation temperature and higher fuel flow rates, combustion of efficiency showed a better result.

  • PDF

Numerical Study on the Suppression of Shock Induced Separation on a Strongly Heated Wall (강하게 가열된 벽면 위에서 충격파에 의한 경계층 박리의 제거에 관한 수치 연구)

  • LEE Doug-Bong;SHIN Joon-Cheol
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.59-72
    • /
    • 1997
  • A numerical model is constructed to simulate the interactions of oblique shock wave / turbulent boundary layer on a strongly heated wall. The heated wall temperature is two times higher than the adiabatic wall temperature and the shock wave is strong enough to induce boundary layer separation. The numerical diffusion in the finite volume method is reduced by the use of a higher order convection scheme(UMIST scheme) which is a TVD version of QUICK scheme. The turbulence model is Chen-Kim two time scale model. The comparison of the wall pressure distribution with the experimental data ensures the validity of this numerical model. The effect of strong wall heating enlarges the separation region upstream and downstream. In order to eliminate the separation, wall suction is applied at the shock foot position. The bleeding slot width is about same as the upstream boundary layer thickness and suction mass flow is 10% of the flow rate in the upstream boundary layer. The final configuration of the shock reflection pattern and the wall pressure distribution approach to the non-viscous value when wall suction is applied.

  • PDF

Numerical Simulation of Shock Wave Reflecting Patterns for Different Flow Conditions

  • Choi, Sung-Yoon;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.74-85
    • /
    • 2002
  • The numerical experiment has been conducted to investigate the unsteady shock wave reflecting phenomena. The cell-vertex finite-volume, Roe's upwind flux difference splitting method with unstructured grid is implemented to solve unsteady Euler equations. The $4^{th}$-order Runge-Kutta method is applied for time integration. A linear reconstruction of the flux vector using the least-square method is applied to obtain the $2^{nd}$-order accuracy for the spatial derivatives. For a better resolution of the shock wave and slipline, the dynamic grid adaptation technique is adopted. The new concept of grid adaptation technique, which is much simpler than that of conventional techniques, is introduced for the current study. Three error indicators (divergence and curl of velocity, and gradient of density) are used for the grid adaptation procedure. Considering the quality of the solution and the numerical efficiency, the grid adaptation procedure was updated up to $2^{nd}$ level at every 20 time steps. For the convenience of comparison with other experimental and analytical results, the case of interaction between the straight incoming shock wave and a sharp wedge is simulated for various flow conditions. The numerical results show good agreement with other experimental and analytical results, in the shock wave reflecting structure, slipline, and the trajectory of the triple points. Some critical cases show disagreement with the analytical results, but these cases also have been proven to show hysteresis phenomena.

A Numerical Simulation of Projectile Aerodynamics Using a Ballistic Range (Ballistic Range를 이용한 Projectile 공기역학의 수치모사)

  • Jung S. J.;Rajesh G.;Kim H. D.;Lee J. M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.386-393
    • /
    • 2005
  • The objective of the present study is to develop a new type of the Ballistic range, called 'two-stage light gas gun'. A computational work has been performed to investigate the aerodynamics of a projectile which is launched from the two-stage light gas gun. A moving coordinate method for a multi-domain technique is employed to simulate unsteady projectile flows with a moving boundary. The effect of a virtual mass is added to the axisymmetric unsteady Euler equation systems. The computed results reasonably capture the major flow characteristics which are generated in launching the projectile supersonically, such as the interaction between the shock wave and the blast wave, the interaction between the vortical flow and the barrel shock, and the steady under-expanded jet. The present computational results properly predict the velocity, acceleration, and drag histories of the projectile.

  • PDF

A STUDY ON THE INTERPOLATION METHODS FOR THE FLUID-STRUCTURE INTERACTION ANALYSIS (유체-구조 연계 해석을 위한 보간 기법 연구)

  • Lee, J.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • The fluid-structure interaction analysis such as a static aeroelastic analysis requires the result of each analysis as an input to the other analysis. Usually the grids for the fluid analysis and the structural analysis are different, so the results should be transformed properly for each other. The Infinite Plate Spline(IPS) and the Thin Plate Spline(TPS) are used in interpolating the displacement and the pressure. In this study, such interpolation methods are compared with kriging which provides a precise response surface. The static aeroelastic analysis is performed for the supersonic flow field with shock waves and the pressure field is interpolated by the TPS and kriging. The TPS shows tendency to weaken the shock strength, whereas kriging preserves the shock strength.

Investigation on the shock-induced rocket separation from the mother plane (충격파에 의한 비정상 모선분리 현상 연구)

  • Kim Y. S.;Ji Y. M.;Lee J.-W.;Park J. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.155-160
    • /
    • 2004
  • This paper describes a supersonic separation of air-launching rocket from the mother plane. Three dimensional Euler equations were numerically solved to analyze steady/unsteady state fluid flows. To solve the Euler equations, named CFD-FASTRAN that is commercial computation code. The results of simulation clearly demonstrate effect of shock-expansion wave interaction between the rocket and the mother plane. Moreover, important influential factors at separating stage of the rocket were extracted with a comprehensive analysis. Finally, from the consideration of supersonic-separation, a guideline to safety-separation is given to the design of supersonic air-launching rocket.

  • PDF

A Numerical Study on Strut-Placed Supersonic Flow in Annulus Flowfield (스트럿트가 있는 초음속 환형유동장에 대한 수치적 연구)

  • Park Hee Jun;Joo Won Goo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.53-63
    • /
    • 2002
  • In this numerical approach, strut-placed supersonic annular flow is examined. The geometrical variations of strut cause strong influence on flowfield structures. The geometrical variations are as follows, swept effect, attack angle effect, variation of leading edge shape. These changed features such as velocity structure, pressure structure, shock-boundary layer interaction are compared and analyzed according to each geometrical configuration.

  • PDF

The Interaction Between Modules Caused by Thermal Choking in a Supersonic Duct (덕트내 초음속 유동에서 열폐색에 의한 모듈 간의 간섭)

  • Kim, Jang-Woo;Koo, Kyung-Wan;Han, Chang-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.109-115
    • /
    • 2007
  • Airframe-integrated Scramjet engines of NASA Langley type consist of a compressor, a combustion chamber and a nozzle. When some disturbances occur in one module of the engine, its influences are propagated to other modules. In this study, it is investigated numerically how shock waves were caused by thermal choking in one module propagate upstream and how they influence adjacent modules. The calculations are carried out in 2-dimensional supersonic viscous flow model using explicit TVD scheme in generalized coordinates. The adverse pressure gradient caused by heat addition brings about separation of the wall boundary layers and formation of the oblique shock wave that proceed to upstream. This moving shock wave formed one module blocks the flow coming into the adjacent modules, which makes the modules unstarted.

INVESTIGATION ON CRITERION OF SHOCK-INDUCED SEPARATION IN SUPERSONIC FLOWS

  • Heuy-Dong KIM
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.69-83
    • /
    • 1995
  • A great number of experimental data indicating shock-induced separation(SIS) in internal or external supersonic flows were reviewed to make clear the mechanism of SIS and to present the criterion of turbulent boundary layer separation. The interesting conclusions were obtained for the considerably wide range of flow geometries that the incipient separation is almost independent of the flow geometries, and that it is relatively unaffected by changes in gas specific heat, and boundary layer Reynolds number, Furthermore, the pressure rise necessary to separate boundary layer in external flows was found to be applicable to SIS in overexpanded propulsion nozzles. This is due to the fact that the SIS phenomenon caused by the interaction between shock waves and turbulent boundary layers is processed through a supersonic deceleration. This is, the SIS in almost all of interacting flow fields is governed by the concept of free interaction, and criterion of SIS is only a Function of upstream Mach number.

  • PDF

Aerodynamics of a wing section along an entry path in Mars atmosphere

  • Zuppardi, Gennaro;Mongelluzzo, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.53-67
    • /
    • 2021
  • The increasing interest in the exploration of Mars stimulated the authors to study aerodynamic problems linked to space vehicles. The aim of this paper is to evaluate the aerodynamic effects of a flapped wing in collaborating with parachutes and retro-rockets to reduce velocity and with thrusters to control the spacecraft attitude. 3-D computations on a preliminary configuration of a blunt-cylinder, provided with flapped fins, quantified the beneficial influence of the fins. The present paper is focused on Aerodynamics of a wing section (NACA-0010) provided with a trailing edge flap. The influence of the flap deflection was evaluated by the increments of aerodynamic force and leading edge pitching moment coefficients with respect to the coefficients in clean configuration. The study was carried out by means of two Direct Simulation Monte Carlo (DSMC) codes (DS2V/3V solving 2-D/3-D flow fields, respectively). A DSMC code is indispensable to simulate complex flow fields on a wing generated by Shock Wave-Shock Wave Interaction (SWSWI) due to the flap deflection. The flap angle has to be a compromise between the aerodynamic effectiveness and the increases of aerodynamic load and heat flux on the wing section lower surface.