• Title/Summary/Keyword: Shock-induced combustion

Search Result 20, Processing Time 0.023 seconds

Development of Explosion Model of Energetic Materials Considering Shock to Detonation Transition and Damage by External Impact (외부 충격에 의한 손상을 고려한 화약과 추진제의 폭발모델 개발)

  • Kim, Bohoon;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.97-99
    • /
    • 2012
  • A pressure-based BOIK model considering Shock to Detonation Transition(SDT) and damage due to external fragment or bullet stimuli impact on energetic materials and analytical approach for determination of free parameters are proposed. The rate of product mass fraction(${\lambda}$) consists of ignition term that represents the initiation due to shock compression and growth term that describes propagation of detonation wave and strain term representing the morphological deformation induced by external impact.

  • PDF

Computational Validation of Supersonic Combustion Phenomena associated with Hypersonic Propulsion (극초음속 추진과 관련된 초음속 연소 현상의 수치적 검증)

  • Choi Jeong-Yeol;Jeung In-Seuck;Yoon Youngbin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.117-122
    • /
    • 1998
  • A numerical study is carried out to investigate the transient process of combustion phenomena associated with hypersonic propulsion devices. Reynolds averaged Navier-Stokes equations for reactive flows are used as governing equations with a detailed chemistry mechanism of hydrogen-air mixture and two-equation SST turbulence modeling. The governing equations are discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit time accurate method. At first, oscillating shock-induced combustion is analyzed and the comparison with experimental result gives the validity of present computational modeling. Secondly, the model ram accelerator experiment was simulated and the results show the detailed transient combustion mechanisms. Thirdly, the evolution of oblique detonation wave is simulated and the result shows transient and final steady state behavior at off-stability condition. Finally, shock wave/boundary layer interaction in combustible mixture is studied and the criterion of boundary layer flame and oblique detonation wave is identified.

  • PDF

Numerical Study of Regular Start and Unstart Process of Superdetonative Speed Ram Accelerator (초폭굉속도 램 가속기의 정상발진 및 불발과정의 수치적 연구)

  • Moon, G.W.;Jeung, I.S.;Choi, J.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.31-41
    • /
    • 2000
  • A numerical study was conducted to investigate the combustion phenomena of regular start and unstart processes based on ISL#s RAMAC 30 experiments with different diluent amounts in a ram accelerator. The initial projectile launching speed was 1800m/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with $5CO_2\;or\;4CO_2$. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1800m/s, as was found in the experiments using a steel-covered projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the regular start and unstart processes found in the experiments with an aluminum-covered projectile. The numerical results matched almost exactly to the experimental results. As a result, it was found that the regular start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF

Experimental Study on Upstream Fueled Cavity Flame-Holder Scramjet Engine (상류 분사 공동 화염 지지부를 가지는 스크램제트 엔진에 관한 실험적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 2006
  • The model cavity scramjet engine experiments are carried out using T3 free-piston shock tunnel. Upstream hydrogen fuel is injected before the cavity with different injection pressure. OH planar laser-induced fluorescence is used to investigate the combustion zone and piezoelectric pressure transducers are used to define the pressure rise due to the combustion. Main combustion region is a mixing layer which is between air and fuel. Also high OH fluorescence signal is appeared in the shear layer above the cavity in high equivalence ratio. From the OH signal in the cavity, this fuel injection system can be a role as a flame-holder.

  • PDF

Numerical Simulation of Projectiles in Detonable Gases

  • Moon, Su-Yeon;Lee, Chooung-Won;Sohn, Chang-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.43-47
    • /
    • 2001
  • A numerical parametric study is conducted to simulate shock-induced combustion with a variation in freestream conditions. The analysis is limited to inviscid flow and includes chmical nonequilibrium. A steady combustion front is established if the freestream Mach number is above the Chapman-Jouguet speed of the mixture. On the other, an unsteady reaction fi:ont is established if the freestream Mach number is below or at the Chapman-Jouguet speed of the mixture. The three cases have been simulated for Machs 4.18, 5.11, and 6.46 with a projectile diameter of 15 mm. Machs 4.18 and 5.11 shows an unsteady reaction front, whereas Mach 6.46 represents a steady reaction front. Thus Chapman-Jouguet speed is one of deciding factor for the instabilities to trigger. The instabilities of the chemical front with a variation of projectiles diameters will be investigated.

  • PDF

Experimental Study on Upstream Fueled Cavity Flame-Holder Scramjet Engine (상류 분사 공동 화염 지지부를 가지는 스크램제트 엔진에 관한 실험적 연구)

  • Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.;Jeong, Eun-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.197-204
    • /
    • 2006
  • The model cavity scramjet engine experiments are carried out using T3 free-piston shock tunnel. Upstream hydrogen fuel is injected before the cavity with different injection pressure. OH planar laser-induced fluorescence is used to investigate the combustion zone and piezoelectric pressure transducers are used to define the pressure rise due to the combustion. Main combustion region is a mixing layer which is between air and fuel. Also high OH fluorescence signal is appeared in the shear layer above the cavity in high equivalence ratio. From the OH signal in the cavity, this fuel injection system can be a role as a flame- holder.

  • PDF

Characteristics of the Microwave Induced Flames on the Stability and Pollutant Emissions (마이크로파가 인가된 화염에서의 화염안정성 및 오염물질 배출특성)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.23-27
    • /
    • 2014
  • The use of electromagnetic energy and non-equilibrium plasma for enhancing ignition and combustion stability is receiving increased attention recently. The conventional technologies have adapted the electrical devices to make the electromagnetic field, which resulted in various safety issues such as high-maintenance, additional high-cost system, electric shock and explosion. Therefore, an electrodeless microwave technology has an advantage for economic and reliability compared with conventional one because of no oxidation. However, the application of microwave has been still limited because of lack of interaction mechanism between flame and microwave. In this study, an experiment was performed with jet diffusion flames induced by microwaves to clarify the effect of microwave on the combustion stability and pollutant emissions. The results show that microwave induced flames enhanced the flame stability and blowout limit because of abundance of radical pool. However, NOx emission was increased monotonically with microwave intensity except 0.2 kW, and soot emission was reduced at the post flame region.

Effect of Nozzle Initial and Exit Wall Angles on Supersonic Flow Field in a Thrust Optimized Nozzle (추력이 최적화된 노즐의 초음속 유동에 대한 노즐벽 초기 및 출구각도의 영향)

  • Jeon, Tae Jun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.1-13
    • /
    • 2021
  • Effects of the nozzle wall angles on the supersonic flow field in a thrust optimized nozzle were numerically investigated. The combustor and operating condition of 30-tonf rocket engine was selected to study the optimum nozzle shape. The nozzle flow of combustion products was realized by the shifting equilibrium calculation for the propellant of kerosene-LOx. The change of nozzle wall angles induced different developing patterns of the internal and secondary shock wave. The optimum nozzle was obtained when the internal shock was in a specific position at the nozzle outlet. The nozzle wall angles of the optimum nozzle were very similar to those of the optimum nozzle which does not consider the shock wave.

On the Use of Standing Oblique Detonation Waves in a Shcramjet Combustor

  • Fusina, Giovanni;Sislian, Jean P.;Schwientek, Alexander O.;Parent, Bernard
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.671-686
    • /
    • 2004
  • The shock-induced combustion ramjet (shcramjet) is a hypersonic airbreathing propulsion concept which over-comes the drawbacks of the long, massive combustors present in the scramjet by using a standing oblique detonation wave (a coupled shock-combustion front) as a means of nearly instantaneous heat addition. A novel shcramjet combustor design that makes use of wedge-shaped flameholders to avoid detonation wave-wall interactions is proposed and analyzed with computational fluid dynamics (CFD) simulations in this study. The laminar, two-dimensional Navier-Stokes equations coupled with a non-equilibrium hydrogen-air combustion model based on chemical kinetics are used to represent the physical system. The equations are solved with the WARP (window-allocatable resolver for propulsion) CFD code (see: Parent, B. and Sislian, J. P., “The Use of Domain Decomposition in Accelerating the Convergence of Quasihyperbolic Systems”, J. of Comp. Physics, Vol. 179, No. 1,2002, pages 140-169). The solver was validated with experimental results found in the literature. A series of steady-state numerical simulations was conducted using WARP and it was deter-mined by means of thrust potential calculations that this combustor design is a viable one for shcramjet propulsion: assuming a shcramjet flight Mach number of twelve at an altitude of 36,000 m, the geometrical dimensions used for the combustor give rise to an operational range for combustor inlet Mach numbers between six and eight. Different shcramjet flight Mach numbers would require different combustor dimensions and hence a variable geometry system in or-der to be viable.

  • PDF

Experimental Investigation on Water Hammer Phenomenon in the Recirculation Line of a Liquid Rocket Engine (액체로켓엔진 재순환 유로에서의 수격현상에 관한 실험적 연구)

  • Kim, Bokyem;Hong, Moongeun;Lee, Jisung;Kim, Junghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.110-118
    • /
    • 2021
  • In a liquid rocket engine system, the flow of oxidizer into the combustion chamber is controlled by the main oxidizer shut-off valve. When the valve is closed, the oxidizer flows via the recirculation line, not into the combustion chamber. In this situation, the measured pressure could be much higher than a design value because of the water hammer phenomenon. In this paper, the experiments on the water hammer in the recirculation line with different initial conditions were conducted in order to study the pressure wave produced in each case. According to the experimental results, characteristics of the pressure wave in the recirculation line depend on the initial condition. To be specific, the pressure surge is maximized in case that the shock is condensation-oriented in the end of the recirculation line.