• 제목/요약/키워드: Shock train

검색결과 65건 처리시간 0.031초

터널내를 주행하는 열차의 공기역학적 해석(I)-1열차의 공기 역학- (Aerodynamic Analysis of a Train Running in a Tunnel(I)-Aerodynamics of One-Train-)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.963-972
    • /
    • 1997
  • As a high-speed train enters a tunnel, a compression wave is generated ahead of it due to the piston action of train. The compression waves propagate along the tunnel and reflect at the exit of tunnel. A complex wave phenomenon appears in the tunnel, because of the successive reflections of the pressure waves at the exit and entrance of tunnel. The pressure waves give rise to large pressure transients which impose the fluctuating loads on the running train. It is highly needed that the pressure transients should be predicted to design the train body and to improve the comfortableness of the passengers in the train. In the present study, the pressure transients were calculated numerically for a wide range of train speed and compared with the previous tunnel tests. The calculation results agreed with ones of the tunnel tests, and the mechanism of pressure transients was made clear.

터널내를 주행하는 열차의 공기역학적 해석(II)-2열차의 공기역학- (Aerodynamic Analysis of a Train Running in a Tunnel(II)-Aerodynamics of Two-Trains-)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.983-995
    • /
    • 1997
  • As a high-speed train enters a tunnel, a compression wave is generated ahead of it due to the piston action of train. The compression waves propagate along the tunnel and reflect backward at the exit of tunnel. A complex wave phenomenon appears in the tunnel, because of the successive reflections of the pressure waves at the exit and entrance of tunnel. The pressure waves can give rise to large pressure transients which impose the fluctuating loads on the running train. It is highly needed that the pressure transients should be predicted to design the train body and to improve the comfort for the passengers in the train. In the present study, the pressure transients and aerodynamic drag for two-trains running in a tunnel were calculated numerically for a wide range of train speed, and compared with the results of the previous tunnel tests and calculations for one train. The present calculation results agreed with ones of the tunnel tests, and the mechanism of pressure transients was made clear.

고속철도 터널에서 발생하는 파동현상에 관한 충격파관의 연구(1) - 압축파의 특성에 대하여 - (Study of Shock Tube for Wave Phenomenon in High Speed Railway Tunnel(1) - On the characteristics of Compression Wave -)

  • 김희동
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2686-2697
    • /
    • 1994
  • When a railway train enters a tunnel at high speed, a compression wave is formed in front of the train and propagates along the tunnel. The compression wave subsequently emerges from the exit of the tunnel, which causes an impulsive noise. In order to estimate the magnitudes of the noises and to effectively minimize them, the characteristics of the compression wave propagating in a tunnel must be understood. In the present paper, the experimental and analytical investigations on the attenuation and distortion of the propagating compression waves were carried out using a model tunnel. This facility is a kind of open-ended shock tube with a fast-opening gate valve instead of a general diaphragm. One-dimensional flow model employed in the present study could appropriately predict the strength of the compression wave, Mach number and flow velocity induced by the compression wave. The experimental results show that the strength of a compression wave decreases with the distance from the tunnel entrance. The decreasing rate of the wave strength and pressure gradient in the wave is strongly dependent on the strength of the initial compression wave at the tunnel entrance.

틸팅열차 및 기존열차의 분기기 통과시 발생하는 소음, 진동 발생 특성 (Characteristics of Noise and Vibration emitted from Tilting and existing train pass through the Turnout system)

  • 박상곤;정성근;손성완;엄기영;엄주환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.88-91
    • /
    • 2007
  • Turnout system is a mechanical installation enabling trains to be guided from one track to another which is consists of point blades, common crossing and guard rail etc. These structural feature causes vibration, noise and damages while railroad car wheel is passes by. A tilting train is a train with a tilting mechanism that enables increased speed on regular railroad tracks. The aim of this paper is to study a characteristics of the shock-vibration and noise of tilting and existing train passes by turnout systems. To analyze and assesment, noise and vibration measurement was carried out at the Naesu-station of Chungbuk-line which equipped with cast manganese crossing and built-up crossing and Illo-station of Honam-line which equipped with cast manganese crossing.

  • PDF

다공벽을 전파하는 압축파에 관한 수치해석적 연구 (Numerical Study of Compression Waves Propagating Through Porous Walls)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1403-1412
    • /
    • 1997
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates through the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. In the purpose of the impulsive noise reduction, the present study calculated the effect of porous walls on the compression wave propagating into a model tunnel. Two-dimensional unsteady compressible equations were differenced by using a Piecewise Linear Method. Calculation results show that the cavity/porous wall system is very effective for a compression wave with a large nonlinear effect. The porosity of 30% is most effective for the reduction of the maximum pressure gradient of the compression wave front. The present calculation results are in a good agreement with experimental ones obtained previously.

실제기체 상태방정식을 적용한 열압축기 내부유동에 대한 수치해석 (Numerical Analysis for the Internal Flow of Thermal Vapor Compressor with real gas equation of state)

  • 강위관;최두열;신지영;김무근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.216-223
    • /
    • 2011
  • 열압축기는 고압 증기를 이용하여 저압 증기를 중간압으로 이송하는 일종의 이젝터이다. 이젝터에 대한 기존의 수치해석 연구는 대부분 작동유체를 이상기체로 취급하고 있으나 상변화가 발생하는 경우 이상기체 거동에서 크게 벗어날 수 있다. 따라서 본 연구에서는 이상기체 상태방정식 대신 Redlich-Kwong 방정식을 적용하여 열압축기 내부 유동을 수치 해석하였고, realizable k-${\epsilon}$ 모델과 SST k-${\omega}$ 모델을 비교한 결과 SST k-${\omega}$ 모델이 shock diamond 패턴과 박리 및 난류경계층을 잘 예측하는 것을 확인할 수 있었다. 또한 실제기체 상태방정식을 사용한 경우가 이상기체 상태방정식을 사용한 경우에 비해 상대적으로 디퓨저 입구 부분과 디퓨저 목부분에서 에너지 손실이 많은 것을 알 수 있었으며, 디퓨저 출구부분에서 shock train에 의한 압력상승은 상대적으로 적으나 pseudo shock에 의한 압력상승은동일한 것으로 확인되었다.

유도탄 탄두의 전방구조물 완충효과 연구 (Study on Shock Absorb Effect in front Section of Missile Warhead)

  • 염기선
    • 한국군사과학기술학회지
    • /
    • 제7권2호
    • /
    • pp.118-125
    • /
    • 2004
  • In anti-ship missile, the seeker and guidance control units are located in front of warhead. When the missile hits target, these structures play an important role to warhead structure like a shock absorber Because the shock waves are attenuated, the survival probability of warhead increases which guarantees the explosive train. In this thesis the role of frontal sections is studies. The theoretical analysis and numerical analyses using LS-DYNA code are performed. To prove the effect of shock absorber, the penetration test using subscale prototype warhead are executed.

국내의 철도 차량의 진동에 대한 인체 영향 조사 (Assessing the Effects of Vibration Transmitted by Domestic Train Health on Human)

  • 김진기;홍동표;최병재;정완섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.455-458
    • /
    • 2001
  • In this paper, ISO2631-1(1997) was used to assess the vibration and shock transmitted by train seat with respect to possible effects on human health. Evaluations have been performed on the seat acceleration measured in two type of train, Saemaulho and Mugunghwaho. For each train, limiting daily exposure durations were estimated by comparing the frequency weighted root mean square(i.e., r.m.s) acceleration and the vibration dose values(i.e., VDV), calculated according to ISO2631-1(1997) with exposure limits, health guidance caution zones.

  • PDF

스로틀 전자제어 방식 M/T차량의 가/감속 시 운전성 향상에 관한 연구 (A Study of the Driveability Improvement on the Electronic Throttle Control M/T Vehicle at Tip-in/out)

  • 박경석;이종화;박진일
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.151-157
    • /
    • 2006
  • The passenger car drivers want in general to feel good driveability, but they sometimes feel uncomfortable by shock and jerk phenomena when they push or release acceleration pedal with clutch on state. In this paper, the shock and jerk characteristics are studied on the vehicles controlled by the throttle-by-wire system. Experiments and simulations were carried out on two vehicles which show different control characteristics. The engine torque control characteristics was analyzed by measuring cylinder pressure. Various specification factors of the vehicles and the torque control logic of the engines were simulated through experimental data basis. The result shows the spring effect of the trans-axle in the drive-train is one of the most important factors of the shock-jerk phenomena and the engine torque control method is also responsible for the reducing the shock-jerk amplitude. In this paper a new control logic of the engine torque is suggested for the better driveablility on the tip-in/out event.

수치적 시뮬레이션과 충격 시험을 통한 수직방향 진동절연 완충기 설계 및 성능 평가 (Design and Performance Evaluation of the Vibration Absorber of Vertical Direction Using Numerical Simulation and Shock Test)

  • 박상길;방승우;권오철;이정윤;오재응
    • 한국소음진동공학회논문집
    • /
    • 제18권5호
    • /
    • pp.558-563
    • /
    • 2008
  • Vibration/shock affects biggest taking a train subtraction of vehicle and durability decline. Therefore, absorber is used for vibration/shock isolation and various qualities of the material and design are applied to isolation. This paper proposes vibration/shock absorber that applies 'Disc' spring. Through comparison with 'Disc' spring that has nonlinearity and coil spring that is having linearity, see effect that nonlinearity of isolation gets in vibration/shock Isolation. Coil spring and 'Disc' spring are non-linear numerical analysis and simulation through theory for this, get and investigate comparison result through an experiment finally. Expressed and formulated shock through 'Runge-Kutta' method/impact response to nonlinear-vibration-equation of 1 degree of freedom for numerical analysis. Double half sine pulse of excitation used and analyzed result through spectrum response analysis here. Response of disc spring is compared to response of coil spring by changing $h_o/t$ ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and to design the optimal absorber under the limited condition. And then, the isolation effect was analyzed through the shock test.