• Title/Summary/Keyword: Shock physics

Search Result 146, Processing Time 0.022 seconds

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF

Exploring the power of physics-informed neural networks for accurate and efficient solutions to 1D shallow water equations (물리 정보 신경망을 이용한 1차원 천수방정식의 해석)

  • Nguyen, Van Giang;Nguyen, Van Linh;Jung, Sungho;An, Hyunuk;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.939-953
    • /
    • 2023
  • Shallow water equations (SWE) serve as fundamental equations governing the movement of the water. Traditional numerical approaches for solving these equations generally face various challenges, such as sensitivity to mesh generation, and numerical oscillation, or become more computationally unstable around shock and discontinuities regions. In this study, we present a novel approach that leverages the power of physics-informed neural networks (PINNs) to approximate the solution of the SWE. PINNs integrate physical law directly into the neural network architecture, enabling the accurate approximation of solutions to the SWE. We provide a comprehensive methodology for formulating the SWE within the PINNs framework, encompassing network architecture, training strategy, and data generation techniques. Through the results obtained from experiments, we found that PINNs could be an accurate output solution of SWE when its results were compared with the analytical method. In addition, PINNs also present better performance over the Artificial Neural Network. This study highlights the transformative potential of PINNs in revolutionizing water resources research, offering a new paradigm for accurate and efficient solutions to the SVE.

Spiral Structure and Mass Inflows in Barred-Spiral Galaxies

  • Kim, Yonghwi;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.39.1-39.1
    • /
    • 2013
  • We use high-resolution hydrodynamic simulations to study nonlinear gas responses to imposed non-axisymmetric stellar potentials in barred-spiral galaxies. The gas is assumed to be infinitesimally thin, isothermal, and unmagnetized. We consider various spiral-arm models with differing strength and pattern speed, while fixing the bar parameters. We find that the extent and shapes of spiral shocks as well as the related mass drift depend rather sensitively on the pattern speed. In models where the arm pattern is rotating more slowly than the bar, the gaseous arms extend from the bar ends all the way to the outer boundary, with a pitch angle slightly smaller than that of the stellar counterpart. The arms drive mass inflows at a rate of ${\sim}0.5-2.5M{\odot}/yr$ to the bar region to which the shock dissipation, external torque, and self-gravitational torque contribute about 50%, 40%, and 10%, respectively. About 85% of the inflowing mass is added to bar substructures such as an inner ring, dust lanes, and a nuclear ring. while the remaining 15% encircles the bar region. On the other hand, models where the arms corotate with the bar exhibit mass outflows, rather than inflows, over most of the arm region. In these models, spiral shocks are much more tightly wound than the stellar arms and cease to exist in the region where $M{\bot}/sinp*{\geq}25-40$, where $M{\bot}$ denotes the Mach number of a rotating gas perpendicular to the arms with pitch angle p*. We demonstrate that the distributions of line-of-sight velocities and densities can be a useful diagnostic tool to distinguish if the arms and bar corotate or not.

  • PDF

Surface Modification by Atmospheric Pressure DBDs Plasma: Application to Electroless Ni Plating on ABS Plates

  • Song, Hoshik;Choi, Jin Moon;Kim, Tae Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.133-138
    • /
    • 2013
  • Acrylonitrile-butadiene-styrene (ABS) plastic is a polymer material extensively used in electrical and electronic applications. Nickel (Ni) thin film was deposited on ABS by electroless plating, after its surface was treated and modified with atmospheric plasma generated by means of dielectric barrier discharges (DBDs) in air. The method in this study was developed as a pre-treatment for electroless plating using DBDs, and is a dry process featuring fewer processing steps and more environmentally friendliness than the chemical method. After ABS surfaces were modified, surface morphologies were observed using a scanning electron microscope (SEM) to check for any physical changes of the surfaces. Cross-sectional SEM images were taken to observe the binding characteristics between metallic films and ABS after metal plating. According to the SEM images, the depths of ABS by plasma are shallow compared to those modified by chemically treatment. The static contact angles were measured with deionized (DI) water droplets on the modified surfaces in order to observe for any changes in chemical activities and wettability. The surfaces modified by plasma showed smaller contact angles, and their modified states lasted longer than those modified by chemical etching. Adhesion strengths were measured using 3M tape (3M 810D standard) and by 90° peel-off tests. The peel-off test revealed the stronger adhesion of the Ni films on the plasma-modified surfaces than on the chemically modified surfaces. Thermal shock test was performed by changing the temperature drastically to see if any detachment of Ni film from ABS would occur due to the differences in thermal expansion coefficients between them. Only for the plasma-treated samples showed no separation of the Ni films from the ABS surfaces in tests. The adhesion strengths of metallic films on the ABS processed by the method developed in this study are better than those of the chemically processed films.

Exploration of shockwaves on polymeric membrane physical properties and performance

  • Lakshmi, D. Shanthana;Saxena, Mayank;Ekambaram, Shivakarthik;Sivaraman, Bhalamurugan
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2021
  • The Commercial polymeric membranes like Polysulfone (PSF), Polyvinylidene difluoride (PVDF) and Polyacrylonitrile (PAN) which are an integral part of water purification investigation were chosen for the shockwave (SW) exposure experiment. These membranes were prepared by blending polymer (wt. %) / DMF (solvent) followed by phase-inversion casting technique. Shockwaves are generated by using Reddy Tube lab module (Table-top Shocktube) with range of pressure (1.5, 2.5 and 5 bar). Understanding the changes in membrane before and after shock wave treatment by parameters, i.e., pure water flux (PWF), rejection (%), porosity, surface roughness (AFM), morphology (SEM) and contact angle which can significantly affect the membrane's performance. Flux values PSf membranes shows increase, 465 (pristine) to 524 (1.5wt%) LMH at 50 Psi pressure and similar enhancement was observed at 100Psi (625 to 696 LMH). Porosity also shows improvement from 73.6% to 76.84% for 15wt% PSf membranes. It was observed that membranes made of polymers such as PAN and PSF (of high w/w %) exhibits some resistance against shockwaves impact and are stable compared to other membranes. Shockwave pressure of up to 1.5 bar was sufficient enough to change properties which are crucial for performance. Membranes exposed to a maximum pressure of 5 bar completely scratched the surface and with minimum pressure of 1.5bar is optimum enough to improve the water flux and other parameters. Initial results proved that SW may be suitable alternative route to minimize/control membrane fouling and improve efficiency.

Reliability Evaluation and failure Analysis for High Voltage Ceramic Capacitor (고압 커패시터의 고장분석과 신뢰성 평가)

  • 김진우;송옥병;신승우;이희진;신승훈;유동수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.337-337
    • /
    • 2001
  • High voltage ceramic capacitors are widely applied in power electronic circuits, such as filters, snubbers, and resonant circuits, due to their excellent features of high voltage endurance and low aging. This paper presents a result of failure analysis and reliability evaluation for high voltage ceramic capacitors. The failure nodes and failure mechanisms were identified in order to understand the failure physics in a component. The causes of failure mechanisms for zero resistance phenomena under withstanding voltage test in high voltage ceramic capacitors molded by epoxy resin were studied by establishing an effective closed-loop failure analysis. Also, the condition for dielectric breakdown was investigated. Particular emphasis was placed on breakdown phenomena at the ceramic-epoxy interface. The validity of the results in this study was confirmed by the results of accelerated testing. Thermal shock test as well as pressure cooker test for high voltage ceramic capacitor mounted on a magnetron were implemented. Delamination between ceramic and epoxy, which, might cause electrical short in underlying circuitry, can occur during curing or thermal cycling. The results can be conveniently used to quickly identify defective lots, determine mean time to failure (MTTF) of each lot at the level of Inspection, and detect major changes in the vendors processes.

  • PDF

Rupture Safety Assesment of Bipropellant Propulsion System at High Pressure Testing (이원 추진 시스템 고압 시험시의 파열 안전성 고찰)

  • Chang, Se-Myong;Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.605-611
    • /
    • 2010
  • The geostationary satellite COMS is going to be launched in 2010, and, in the series of test, there are some high-pressure tests concerning the vessel tank filled with helium gas of hundreds atmospheric pressure. In this paper, authors evaluates risk associated with accidental rupture of the test system. Two possible scenarios are considered: 1) the 310-bar helium tank ruptures at the center of the acoustic chamber, and 2) the 116-bar reduced-pressure helium tank ruptures in the test room shielded by bullet-proof glasses. Using the theory of blast wave propagation and computational simulation, the dynamics of wave reflected in a confined space is investigated for highly complex unsteady flow physics.

Study of the Thrust Vector Control using a Secondary Flow Injection (2차 유동 분사에 의한 제트 유동의 추력 제어에 관한 연구)

  • Jung Sung-Jae;Szwaba Ryszard;Kim Heuy-Dong;Ahn Jae-Mun;Jung Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.119-122
    • /
    • 2002
  • In general, Liquid Injection Thrust Vector Control(LITVC) is accomplished by injecting a liquid into the supersonic exhaust flow through holes in the wall of the propulsion nozzle. This injection flow field is highly complicated and detailed flow physics associated with the secondary flow injection should be known far the practical design and use of the LITVC system. The present study aims at understanding the LTTVC flow field and obtaining fundamental design parameters for LITVC. The experimentations were performed in a supersonic blow-down wind tunnel. Compressed, dry air was used for both the main exhaust and injection flows but the pressures of these two flows were controlled independently. The location of the injection holes was changed and the pressures of the two streams were also changed between 2.0 and 15.0 bar. The effectiveness of LITVC was discussed in details using the results of the pressure measurements and flow visualizations

  • PDF

THE CONTRIBUTION OF STELLAR WINDS TO COSMIC RAY PRODUCTION

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.2
    • /
    • pp.37-48
    • /
    • 2018
  • Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The amount of mechanical energy deposited in the interstellar medium by the wind from a massive star can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life. In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity due to all massive stars in the Galaxy is about ${\mathcal{L}}_w{\approx}1.1{\times}10^{41}erg\;s^{-1}$, which is about 1/4 of the power of supernova explosions, ${\mathcal{L}}_{SN}{\approx}4.8{\times}10^{41}erg\;s^{-1}$. If we assume that ~ 1 - 10 % of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds might be expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

Physics of Solar Flares

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • In this talk we outline the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration which generates high-energy particles. The key physical processes producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in a current sheet to cause shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes that affect lower atmosphere such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been develops, where numerical simulation is a strong tool in that it can reproduce the time-dependent, nonlinear evolution of a flare. In this talk we review various models of a flare proposed so far, explaining key features of individual models. We introduce the general properties of flares by referring observational results, then discuss the processes of energy build-up, release, and transport, all of which are responsible for a flare. We will come to a concluding viewpoint that flares are the manifestation of the recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which has been disrupted via interaction with convective plasma while rising through the convection zone.

  • PDF