• Title/Summary/Keyword: Shock Sensor

Search Result 82, Processing Time 0.033 seconds

Transient heat transfer analysis of inertial measurement devices by outside frictional heat (외부 마찰열에 의한 내부 관성측정장치의 과도 열전달 해석)

  • Tak, Seungmin;Park, Jiwon;Kang, Minkyu;Park, Dongjin;Lee, Jongsu;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • Guided weapon is very excellent strategy system than conventional weapons. Recently, several devices and a technology developed much developing more, inertia measuring device is one example. Inertia measuring device is device that is used to improe more accuracy of guided weapon, this device is operated by sensors of inside. Sensors of inside are parts that is very sensitive about impact or shock, heat that interact when shoot, it is main purpose that verify durability of sensor by heat delivered from outside in this study.

  • PDF

The X-ray Detection Characteristic of vacuum evaporated CsI for Digital X-ray Image Sensor (디지털 X선 영상센서 적용을 위한 진공증착 CsI 특성평가)

  • Shin, Jung-Wook;Park, Ji-Koon;Choi, Jang-Yong;Seok, Dea-Woo;Kim, Jea-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.15-18
    • /
    • 2003
  • In recent years, there has been keen interest in phosphor materials responding X-ray. Cesium iodide of the materials is a material with a high $\gamma$-ray stopping power due to its relative high density and atomic number. CsI is noted for its high resistance to thermal and mechanical shock due to the absence of a cleavage plane. To design the structure of CsI detector, we analysed the structure with SEM and XRD and measured UV meter.

  • PDF

Measurement of Vibration Signals of a Gun Barrel Type Structure using Mechanical Filter (기계적 필터를 이용한 포신형상 구조물의 진동신호 측정)

  • Ryu, Bong-Jo;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.440-443
    • /
    • 2010
  • This paper deals with the method of vibration measurement of a gun barrel structure using mechanical filter. When a bullet with high speed is moving within a gun barrel type structure with low bending vibration frequencies, it is difficult to measure the bending vibration signals of the structure. For example, noncontact type sensors such as displacement or velocity sensor are not appropriate for the measurement of vibrational signals because of the movement effect of the equipment frame through the moving structures or effect of the ground vibration. One of contact type sensors such as accelerometer is profitable for measurement of vibrational signals because of its wide measurement ranges. In the case of a gun barrel structure including high vibrational signals like shock waves, however, it is necessary to propose vibration measurement method filtering high frequencies. The purpose of the paper is to propose the proper vibrational measurement technique filtering high frequencies of a gun barrel type structure.

The Effect of Curvature Radius and Material of Diaphragm on the Valve Opening Time in Diaphragm Type S/R Valve (S/R 밸브에서 격막의 곡률반경과 재료가 밸브 개구시간에 미치는 영향)

  • Cheon, Heung-Kyun;Hwang, Jae-Gun;Cho, Tae-Seok;Kwon, Young-Doo;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2961-2966
    • /
    • 2007
  • When the pressure at the weak spot established at a certain part of a high pressure vessel or piping system exceeds a design pressure, this weak spot is burst, and the pressurized gas emitted through the weak spot will cause a compression wave system. In this connection, in the present study, an experimental study by using a conventional shock tube facility is performed to estimate the effects of the material of diaphragm, curvature radius and thickness of materials on the valve opening time in diaphragm. Pressure sensor having 500kHz in natural frequency is installed at 35mm downstream of the rupture diaphragm to measure the static pressure history of propagating and being accumulated compression wave. 4 kinds of materials are used as diaphragm that is aluminium, copper, stainless steel and zinc. The diaphragm radii of curvature R are ${\infty}$, 120mm and 60, respectively. And the depth for $90^{\circ}$ groove is 0.04mm. It is found that the smaller the tensile strength and elongation of the rupture diaphragm is, the smaller the radius of curvature of the rupture diaphragm is, and for the same conditions the thinner the thickness of the rupture diaphragm is, the shorter the valve opening time becomes. Also, the tensile strength, elongation and the radius of curvature of the rupture diaphragm for the same conditions are smaller, the maximum pressure rise caused by the coalescences of the compression wave is smaller. Finally the pressure ratio is higher, the valve opening time is shortened and gradient of pressure increment is more steepen.

  • PDF

Fast Simulation of Output Voltage for High-Shock Piezoresistive Microaccelerometer Using Mode Superposition Method and Least Square Method (모드중첩법 및 최소자승법을 통한 고충격 압저항 미소가속도계의 출력전압 해석)

  • Han, Jeong-Sam;Kwon, Ki-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.777-787
    • /
    • 2012
  • The transient analysis for the output voltage of a piezoresistive microaccelerometer takes a relatively high computation time because at least two iterations are required to calculate the piezoresistive-structural coupled response at each time step. In this study, the high computational cost for calculating the transient output voltage is considerably reduced by an approach integrating the mode superposition method and the least square method. In the approach, data on static displacement and output voltage calculated by piezoresistive-structural coupled simulation for three acceleration inputs are used to develop a quadratic regression model, relating the output voltage to the displacement at a certain observation point. The transient output voltage is then approximated by a regression model using the displacement response cheaply calculated by the mode superposition method. A high-impact microaccelerometer subject to several types of acceleration inputs such as 100,000 G shock, sine, step, and square pulses are adopted as a numerical example to represent the efficiency and accuracy of the suggested approach.

Design and Fabrication of 4-beam Silicon-Micro Piezoresistive Accelerometer for TPMS Application (TPMS용 4빔 실리콘 미세 압저항형 가속도센서의 설계 및 제작)

  • Park, Ki-Woong;Kim, Hyeon-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • This paper presents the accelerometer which is a key component of TPMS(Tire Pressure Monitoring System). Generally a piezoresistive accelerometer has characteristics of lower cost, better linearity and better immunity about the environmnet noise than a capacitive one. Three types of piezoresistive accelerometers are degined and simulated using ANSYS program. The best one is a piezoresistive sensor which is supported by four beams located at the center of the edge of the mass after comparing the characteristics of resonant frequency of the three types. Considering the sensor size and a simulated maximum stress and maximum displacement, the length of beams is set as $200{\mu}m$. The size of a piezoresistive accelerometer is $3.0mm{\times}3.0mm{\times}0.4mm$. The sensor output is characterized by measuring the output characteristic depending on angle. As a result the offset voltage of the accelerometer is 43.2 mV and its sensitivity is $42.5{\mu}V/V/g$. The temperature bias drift is measured. The shock durability of the sensor is 1500g and the measuring range is 0 ~ 60 g.

Development of Load Cell Using Fiber Brags Grating Sensors and Differential Method for Structural Health Monitoring (구조 건전성 모니터링을 위한 광섬유 브래그 격자 센서와 차동법을 적용한 로드셀 개발)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.299-307
    • /
    • 2009
  • Emerging fiber optic sensor technologies have shown great potential to overcome the difficulties associated with conventional sensors. Fiber optic sensors are immune to EM noise and electric shock and thus can be used in explosion-prone areas. Several kinds of fiber optic sensors have been developed over the last two decades to take advantage of these merits. There have also been many field applications of fiber optic sensors for structural health monitoring as NDT/HDE. However, very few sensors, particularly a load cell have been successfully commercialized. This Paper Presents a load cell using fiber Bra99 gra1ing (FBG) sensors. The shape of the load cell is a link type, and three FBG sensors are used for measuring strains at three different points. Especially, these strains are processed with a differential method in order to exclude common mode noise such as temperature. Moreover, the sensitivity, the linearity and the resolution of the load cell were successfully verified from the experiment of tension test.

Development of Integrated Navigation Computer for On/Off Line Processing (실시간/후처리 기법을 고려한 복합 항법 컴퓨터 개발)

  • Jin, Yong;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.133-140
    • /
    • 2002
  • In this paper, the structure of integrated navigation computer for experiment is proposed. It is designed for considering the real time processing and data storage capacity. It will be used in missile, aircraft, submarine system and experimental vehicle. The I/O device supports IMU, GPS, odometer, altimeter, depth sensor, inclinometer etc. And the main storage device uses the tape device. That can improve the system stability. Therefore it can be used in a high dynamic or shock environment. The embedded linux is used as an Operating System. For the real time capability, sensor data processing and algorithm processing units are seperated. The time synchronization is referenced by IMU data.

The Design and Implementation of the Position Calibration System Using Sensor on u-WBAN (u-WBAN 기반의 센서를 이용한 자세교정 시스템 설계 및 구현)

  • Moon, Seung-Jin;Park, Yoon-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.304-310
    • /
    • 2010
  • Chronic pain and herniated disk is a common disease that 80% of adults are experienced. There diseases rates of caused by the physical shock, such as the traffic accident, and the accidental fall is about 10%. And the most of these diseases is caused by having habitual incorrect position. People know that incorrect position would cause to accumulate continuous stress, but it is not easy to correct position. Because it does not recognize incorrect position repeated habitual consequently. This system collects data of user position after sensors that could measure position attach on use and presumes correct position used by position presumption algorithms. Its system purpose is continuing incorrect position could be aware to user and lead to change to correct position to prevent habituation of incorrect position. If habitual of correct position continues through accurate measurement and repeating cognitive learning, it would help for children and chronic patience.

Development of the Strain Measurement-based Impact Force Sensor and Its Application to the Dynamic Brazilian Tension Test of the Rock (변형률 게이지 측정원리를 이용한 충격 하중 센서의 개발 및 암석의 동적 압열 인장 실험에 적용)

  • Min, Gyeong-jo;Oh, Se-wook;Wicaksana, Yudhidya;Jeon, Seok-won;Cho, Sang-ho
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • In order to obtain the dynamic response behavior of the rock subjected to blasting loading, a shock-proof high sensitivity impact sensor which can measure high frequency dynamic force and strain events should be adopted. Because the impact sensors which uses quartz and piezoelectric element are costly, generally the strain measurement-based impact (SMI) sensors are applied to high speed loading devices. In this study, dynamic Brazilian tension tests of granitic rocks was conducted using the Nonex Rock Cracker (NRC) reaction driven-high speed loading device which adopts SMI sensors. The dynamic response of the granite specimens were monitored and the intermediate strain rate dependency of Brazilian tensile strengths was discussed.