• Title/Summary/Keyword: Shock Design Factor

Search Result 61, Processing Time 0.035 seconds

Load/Unload Dynamics of Slider on Ramp for Various Ramp Shape (램프 형상에 대한 램프 상의 로드/언로드 동특성 해석)

  • Lee, Yong-Hyun;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.467-472
    • /
    • 2005
  • Load/Unload(L/UL) technology includes the benefits, that is, increased areal density, reduced power consumption and improved shock resistance contrary to contact start stop(CSS). It has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main objectives of L/UL are no slider disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL systems. In this paper, we focus on the effect of the ramp profile. We can find out the lateral velocities in L/UL process through experiments and simulations for force of voice coil motor and friction force on ramp. And then, we will gain the optimal design of ramp slope to maintain the minimum clearance of suspension dimple and slider with FE model. In special, after finding the point at which air bearing breaks and designing the ramp, we will identify the results for improving unload performance.

  • PDF

Optimization for Component Noise Validation Test by Evaluation of Noise Control Factors for Suspension (현가장치 소음 발생인자 평가를 통한 부품소음 검증시험 최적화)

  • Son, Myungkoon;Lee, Taeyong;Lee, Sangbok;Lee, Seul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.344-349
    • /
    • 2017
  • Suspension noise from under a passenger car is one of the important factors that impact the perceptual quality for drivers. However, it is difficult to validate this by component level testing in the early stage of development, because suspension noise caused by interaction of the related parts has been found at saleable vehicles late during development or at the manufacturing stage, when many customers have already filed for claims. This study proposed a validation testing under research by the DFSS process that enables reproduction of vehicle level noise by component level testing using a shock absorber with the related parts, such as urethane bumper and top mount. This study also developed a compromised test matrix while analyzing the noise factors through experimental design and analysis of variance to determine what factors can affect noise. Based on this study, we expect that the vehicle level and customer claim can be validated during initial development timing by a more reliable component noise validation test.

A Study on Purchasing Practices, Wearing State and Overall Satisfaction with Footwear for Middle School Students (중학생의 신발구매와 착용실태 및 만족도)

  • Jeong, Young-Sook;Kweon, Soo-Ae
    • Korean Journal of Human Ecology
    • /
    • v.13 no.6
    • /
    • pp.985-995
    • /
    • 2004
  • The purpose of this study is to provide useful footwear information for manufacturers and teenagers so that they can produce or purchase proper footwear that would minimize discomfort. For this study, 486 junior high school students were surveyed with a questionnaire. SPSS WIN10 was used to process a statistical analysis such as ferq., factor analysis, t-test, ANOVA(LSD), crosstab, and coefficient correlation. The results are as follows: A significant difference existed between male and female students in purchasing footwear and using evaluation criteria. When they wear shoes for a long time, they usually experience numbness in toes, blisters, heel, bottom on the feet and peeled skin. Female students experienced more foot injuries than males. There were meaningful correlations among purchasing, evaluation criteria, and satisfaction of footwear. Providing proper information is believed very important for teenagers in choosing right footwear. Footwear manufacturers should help them produce suitable shoes, and further help them establish different marketing strategies. To ease the foot discomfort, shoes should be developed with various widths and sizes. Shock absorbing soles and more flexible materials are also necessary.

  • PDF

Comparison Research between Lighting Based on luminance and Illuminance through Measuring Tunnel Lighting (터널조명 측정을 통한 조도와 휘도기반의 조명 비교 연구)

  • Lee, Mi-Ae;Han, Seung-Hun;Kim, Yeon-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.14-19
    • /
    • 2013
  • Tunnel lighting design and operation are both regulated based on luminance in and out of Korea these days. However, domestic tunnel lighting is operated by internal lighting depending on external brightness by using an illuminometer applying the conversion factor on luminance. The purpose of tunnel lighting is to alleviate the visual shock occurring from the rapid change from external brightness to internal brightness when entering a tunnel. However, when looking at the tunnels operated based on an illuminometer, it is not a system where the driver can measure the brightness within his or her viewing angle when entering the tunnel. It is general to install and operate the illuminometer on the roof of an administrative office near the tunnel; however, this method is not structured to connect with the internal lighting by checking the brightness of the viewing scope of the driver, thus is not structured to properly apply the viewing conditions of the driver. Rather, it should be in a method for extracting the luminance value within the viewing scope of the driver pursuant to tunnel lighting standards and in connection with internal lighting. This research seeks to find the difference between operations based on luminance and operations based on intensity of Illuminance in road tunnels through field measuring, and to suggest the necessity of operating based on luminance with the resulting value.

The System Position from High Firing Rate of Anti-Aircraft Gun system (고발사율 대공포 발사에 따른 체계자세 연구)

  • Hwang, Boo Il;Lee, Boo Hwan;Kim, Chi Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.611-615
    • /
    • 2015
  • Anti-aircraft gun system is used for low-level air defense system and has more than twin guns with high firing rate in order to maximize the capability of defense. Gun's vibration and bullet's variance has a critical effect on accuracy and hit probability of weapon system such as anti-aircraft gun system with high firing rate. Typical mechanism to reduce the amount of vibration and shock during gun-fire process is very important design factor. In this paper, the suspension characteristics of the vehicle are studied for the improvement of isolating performance of gun firing system with high firing rate. Gun fire test for the vehicle is conducted and computational models using Recurdyn and Adams are created based on test results. Through this study, results of computational analysis are compared with the real test results, which includes type, location and quantity of suspension and gun mechanism are selected for anti-aircraft gun. From the result of this study, we could make basic design and consider the proper component of the system such as suspension and gun spring.

Analysis of Suspension State Matrix to Improve L/UL Performance (로드/언로드 성능향상을 위한 서스펜션 상태행렬의 해석)

  • Kim, Ki-Hoon;Lee, Young-Hyun;Park, Kyung-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1272-1275
    • /
    • 2007
  • The HDD (hard disk drive) using Load/Unload (L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop (CSS). Dynamic L/UL has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. Main design objectives of the L/UL mechanisms are no slider-disk contact or no media damage even with contact during L/UL, and a smooth and short load and unload process. In this paper, we focus on state matrix, pitch static attitude (PSA), roll static attitude (RSA), loading/unloading contour (LC/ULC), impact force and contact. Stability of slider is mainly determined by PSA and RSA. State matrix by PSA and RSA is also important indicator. Therefore we analyze state matrix of SFF HDD suspension through the LC/ULC.

  • PDF

Optimal Dimple Point of SFF HDD Suspension for Improving the Unloading Performance (언로드 성능 향상을 위한 딤플 포인트의 최적설계)

  • Kim, Ki-Hoon;Lee, Young-Hyun;Lee, Hyung-Jun;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.609-612
    • /
    • 2007
  • The HDD (hard disk drive) using Load/Unload (L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop (CSS). Dynamic L/UL has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main design objectives of the L/UL mechanisms are no slider-disk contact or no media damage even with contact during L/UL, and a smooth and short unloading process. In this paper, we focus on lift-off force, pitch static attitude (PSA), roll static attitude (RSA) and dimple point. The "lift-off" force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. PSA and RSA are also very important parameters in L/UL system and stability of slider is mainly determined by PSA and RSA. Dimple point by PSA and RSA is also important indicator. Therefore we find the optimal dimple point of SFF HDD suspension for improving the unloading performance.

  • PDF

Development of a RVIES Syetem for Reactor Vessel Integrity Evaluation (원자로용기 건전성평가를 위한 RVIES 시스템의 개발)

  • Lee, Taek-Jin;Choe, Jae-Bung;Kim, Yeong-Jin;Park, Yun-Won;Jeong, Myeong-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2083-2090
    • /
    • 2000
  • In order to manage nuclear power plants safely and cost effectively, it is necessary to develop integrity evaluation methodologies for the main components. Recently, the integrity evaluation techniques were broadly studied regarding the license renewal of nuclear power plants which were approaching their design lives. Since the integrity evaluation process requires special knowledges and complicated calculation procedures, it has been allowed only to experts in the specified area. In this paper, an integrity evaluation system for reactor pressure vessel was developed. RVIES(Reactor Vessel Integrity Evaluation System) provides four specific integrity evaluation procedures covering PTS(Pressurized Thermal Shock) analysis, P-T(Pressure-Temperature) limit curve generation, USE(Upper Shelf Energy) analysis and Fatigue analysis. Each module was verified by comparing with published results.

A Study on Development of High Voltage Mica Capacitors (고전압 마이카 커패시터 개발에 관한 연구)

  • Yun, Eui-Jung;Choi, Cheal-Soon;Kim, Jae-Wook;Lee, Dong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1229-1234
    • /
    • 2008
  • In this work, ultra high-voltage (17 - 50 kV AC), reliable 80 pF mica capacitors for partial discharge system application were investigated. Mica was used as the dielectric of the capacitors. Using the conservative design rule, over 3 individual $50\;{\mu}m$ thick mica sheets with a size of 30mm{\times}35mm were used with lead foils to form a parallel capacitor element and 20 mica sheets were interleaved with lead foils to form a series stack of parallel capacitor element to meet the requirements of the capacitors. The dimensions of the fabricated 80 pF capacitors for 17 kV AC and 50 kV AC were $90\;mm{\times}90\;mm$ and $95\;mm{\times}180\;mm$, respectively. The high-frequency characteristics of the capacitance (C) and dissipation factor (D) of the developed capacitors were measured using a capacitance meter. The developed capacitors exhibited C of 79.5 - 87.5 pF, had D of 0.001% over the frequency ranges of 150 kHz to 50 MHz, had a self-resonant frequency of 65 MHz, and showed results comparable to those measured for the capacitors prepared recently by $Adwel^{Tm}$. The developed capacitors also showed excellent characteristics for thermal shock test and temperature cycling test.

Landing Stability Simulation of a 1/6 Lunar Module with Aluminum Honeycomb Dampers

  • Pham, Van Lai;Zhao, Jun;Goo, Nam Seo;Lim, Jae Hyuk;Hwang, Do-Soon;Park, Jung Sun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.356-368
    • /
    • 2013
  • The Korea Aerospace Research Institute plans to launch a lunar module by 2025, and so is carrying out a preliminary study. Landing stability on the lunar surface is a key design factor of a lunar module. In this paper, a 1/6 scale model of a lunar module is investigated, for its landing stability on non-level surfaces. The lunar module has four tripod legs, with aluminum honeycomb shock absorbers in each leg strut. ADAMS$^{TM}$, the most widely used multi-body dynamics and motion analysis software, is used to simulate the module's lunar landing. Three types of dampers in the struts (rigid, viscous, and aluminum honeycomb dampers), and two types of lunar surfaces (rigid and elastic) are considered. The Sforce function is adopted, to model the aluminum honeycomb dampers. Details on the modeling and analysis of the landing stability of the 1/6 scale lunar module and the simulation results are provided in this paper.