• Title/Summary/Keyword: Shipyard simulation system

Search Result 39, Processing Time 0.029 seconds

Development of Cell Guide Quality Management System for Container Ships (컨테이너 선박의 셀 가이드 정도 관리 시스템 개발)

  • Park, Bong-Rae;Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.158-165
    • /
    • 2018
  • Generally, container ships contain cargo holds with cell guides that serve to increase the container loading and unloading efficiency, minimize the space loss, and fix containers during the voyage. This paper describes a new quality management system for the cell guides of container ships (the so-called Trim Cell Guide system). The main functions of this system are the trimming of the point cloud obtained using a 3D scanner and an inspection simulation for cell guide quality. In other words, the raw point cloud of cell guides after construction is measured using a 3D scanner. Here, the raw point cloud contains a lot of noise and unnecessary information. Using the GUI interface supported by the system, the raw point cloud can be trimmed. The trimmed point cloud is used in a simulation for cell guide quality inspection. The RANSAC (Random Sample Consensus) algorithm is used for the transverse section representation of a cell guide at a certain height and applied for the calculation of the intervals between the cell guides and container. When the container hits the cell guides during the inspection simulation, the container is rotated horizontally and checked again for a possible collision. It focuses on a system that can be simulated with the same inspection process as in a shipyard. For a practicality review, we compared the precision data gained from an inspection simulation with the measured data. As a result, it was confirmed that these values were within approximately ${\pm}2mm$.

A CAD-based Software for the Simulation of Lifting and Turnover of Ship Block (선박 블록의 이동 및 반전 시뮬레이션 프로그램 개발)

  • Lee, Soo-Beom;Shin, Sang-Beom;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.714-719
    • /
    • 2000
  • In this paper, an application program is made to simulate the behavior of a ship block under various crane works and to generate data of lu9 reactions and wire tensions. The program is based on a CAD program, Pro/ENGINEER. A ship is composed of more than 100 ship blocks. In order to lift, move, turn, or put a ship block at a convenient location fur assembling, workers in a shipyard use cranes, wires, and lugs temporarily attached to the block. In the procedure of lifting and turning a ship block with a crane, it is important to find suitable lug points and wires to do the handling efficiently and prevent accidents. Evaluation of forces in lugs and wires is necessary, but the problem is rather complex due to nonlinearity and nonuniqueness. In the present development, the nonlinear system of equations for quasi-static equilibriums is derived and a Newton type solution method is adopted to solve the system. The importance of initial estimates to the solution is illustrated and two approaches are utilized and compared. With the program developed, users can assign lug points on the CAD model by mouse and choose various linking devices at each crane point. Users can try to simulate the motion for any prescribed conditions, compare the motion of the block and the reactions and choose appropriate lug points and the type of wires and lugs.

  • PDF

Analysis of Welding Positions for Reduction of Musculoskeletal Disorders Based on Simulation Technique (시뮬레이션 기법에 기초한 근골격계 질환 감소를 위한 용접자세 분석)

  • Park, Ju-Yong;Kim, Dong-Joon;Chang, Seong-Rok;Song, Chang-Sub
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.79-85
    • /
    • 2007
  • The industrial disaster caused by a work-related disease like a Musculoskeletal Disorders(MSDs) becomes a big social problem and increases rapidly. This leads to the degradation of the labor desire and the productivity. Welding work belongs to the work with a high intensity. This paper aims to analyze the welding work in the various positions from a view-point of the burden of the human musculoskeletal system and to propose the desired position with lower burden. For this purpose the real welding work was observed in the shipyard and analyzed using the RULA method, a powerful ergonomics tool. The 3-dimensional simulation model fur this work was also developed. In this model, ergonomics human model and welding work environment were built. This model was verified through the comparison to the real work. This paper showed that the improvement of welding position by changing the location of a stool and using some auxiliary tool can reduce the work intensity remarkably and lead to the decrease of MSDs.

Design and Development of Scenario-Based Simulation System to Improve Shipbuilding Execution Scheduling Assessment -A Case Study on Panel Line- (시나리오 기반 조선 실행계획 평가 향상을 위한 시뮬레이션 시스템 개발 -패널라인 개발 사례를 중심으로-)

  • Back, Myunggi;Kim, Youngmin;Hwang, Inhyuck;Lee, Kwang-Kook;Ryu, Cheolho;Shin, Jong Gye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.3
    • /
    • pp.211-223
    • /
    • 2013
  • Today's ever-increasingly competitive shipbuilding market makes it essential for a shipbuilding company to have more efficient production processes and higher productivity as well as better design ability to obtain its competitiveness. A well-established production execution schedule plays an indispensable role to achieve this goal. Most shipbuilding companies carry out an evaluation on their mid-term plan once it is established. However, no evaluation activity exists for a production execution schedule, because practically all the companies depend on the field workers for the production execution scheduling. In this study, a prototype of a ship production execution schedule evaluation system is developed based on the component based design (CBD) methodology. This system enables one to make a production execution schedule that reflects up-to-date shipyard situation and to validate whether the schedule is feasible or not by running a production simulation according to the schedule. Users can also make use of the system as a decision supporting tool that compares several different execution schedules and evaluates which one is the best execution schedule.

Development of an Automation Library in Multi-Body Dynamics Program for Dynamic Structural Analysis of Block Lifting Process (블록의 리프팅 동적 구조해석을 위한 다물체 동역학 프로그램의 내장형 자동화 라이브러리 개발)

  • Jung, Da-un;Cha, Ju-Hwan;Song, Chang-Yong;Lee, Chung-Hyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.135-143
    • /
    • 2016
  • In this study, an embedded system composed of equipment setting, block importing, scenario setting and output reporting is developed in multi-body dynamics program, ADAMS, for conducting dynamic structural analysis of block lifting process. First, equipment used for block lifting process is set in the simulation environment and the shapes and functions of two lifting beams, and six block loaders are provided as the equipment. Second, the modal analysis result of the lifting block is imported from the static structural analysis system, NASTRAN. Third, the lifting scenarios, such as hoisting, waiting, trolley moving, and wire connecting, are set in the system. Finally, output results in the forms of plots, texts and tables, are reported after the dynamic structural analysis. The test examples conducted in a shipyard are applied into the developed system in various condition and scenarios. The loads at the lug points, the stress contours, and the hot spot tables of the developed system are compared with the result of the static analysis system.

A Study on Real Time Working Path Control of Vertical Type Robot System for the Forging and Casting Process Automation

  • Lim, O-Deuk;Kim, Min-Seong;Jung, Yang-Geun;Kang, Jung-Suk;Won, Jong-Bum;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.245-256
    • /
    • 2017
  • In this study, we describe a new approach to real-time implementation of working path control for the forging and casting manufacturing process by vertical type articulated robot system. The proposed control scheme is simple in structure, fast in computation, and useful for real-time control of factory automation based on robot system. Moreover, this scheme does not require any accurate parameter information, nor values of the uncertain parameters and payload variations. Reliability of the proposed controller is proved by simulation and experimental results for robot manipulator consisting of arm with six degrees of freedom under the variation of payloads and tracking trajectories in Cartesian space and joint space. The vertical type articulated robot manipulator with six axes made in SMEC Co., Ltd. has been used for real-time implementation test to illustrate the enhanced working path control performance for unmanned automation of the forging and casting manufacturing process.

Research on systematization and advancement of shipbuilding production management for flexible and agile response for high value offshore platform

  • Song, Young-Joo;Woo, Jong-Hun;Shin, Jong-Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-192
    • /
    • 2011
  • Recently, the speed of change related with enterprise management is getting faster than ever owing to the competition among companies, technique diffusion, shortening of product lifecycle, excessive supply of market. For the example, the compliance condition (such as delivery date, product quality, etc.) from the ship owner is getting complicated and the needs for the new product such as FPSO, FSRU are coming to fore. This paradigm shift emphasize the rapid response rather than the competitive price, flexibility and agility rather than effective and optimal perspective for the domestic shipbuilding company. So, domestic shipbuilding companies have to secure agile and flexible ship production environment that could respond change of market and requirements of customers in order to continue a competitive edge in the world market. In this paper, I'm going to define a standard shipbuilding production management system by investigating the environment of domestic major shipbuilding companies. Also, I'm going to propose a unified ship production management and system for the operation of unified management through detail analysis of the activities and the data flow of ship production management. And, the system functions for the strategic approach of ship production management are investigated through the business administration tools such as performance pyramid, VDT and BSC. Lastly, the research of applying strategic KPI to the digital shipyard as virtual execution platform is conducted.

A Study on Evaluation Technique of Manoeuvring Difficulty by Using the Ship Manoeuvre Simulator for Berthing/Deberthing (선박 접이안 조종 시뮬레이터를 이용한 조종위험도 평가 기법에 관한 연구)

  • Yang Seung-Yeul;Sohn Kyoung-Ho;Lee Hee-Yong;Ha Mun-Keun;Kim Hyun-Soo;Lee Jin-Ho;Im Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.3 s.99
    • /
    • pp.189-194
    • /
    • 2005
  • The berthing/deberthing manoeuvring operation is the peculiar work owned to the marine pilot and the dock master. So, in the port or the shipyard, the berthing/deberthing manoeuvring operation requires considerable concentration and bears dangerousness. In that situation, a tug utilization is getting increased and the external forces have an effect on the own ship because of moving with low advance speed. In this study, we constructed the 2-dimensional virtual ship manoeuvring simulator system with which we can carry out the berthing/deberthing manoeuvring operation by using tugs in the external forces such as strong wind. And then, we propose the objective indexes by which the degree of manoeuvring difficulty evaluated. Using the present system, we carry out manoeuvring simulation experiment in order to grasp correlation between the objective indexes proposed here and the def{ree of manoeuvring difficulty felt by operator. Lastly, we discuss the evaluation technique of manoeuvring difficulty.

A Feasibility Study on the RPM and Engine Power Estimation Based on the Combination of AIS and ECMWF Database to Replace the Full-scale Measurement (실선계측 데이터 대체를 위한 AIS 및 ECMWF 데이터베이스 조합을 이용한 LNGC의 분당 회전수 및 동력 추정에 관한 타당성 연구)

  • You, Youngjun;Kim, Jaehan;Seo, Min-Guk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.501-514
    • /
    • 2017
  • In the previous research, a study was carried out to estimate the actual performance such as the propeller Revolution Per Minute (RPM) and engine power of a Liquefied Natural Gas Carrier (LNGC) using the full-scale measurement data. After the predicted RPM and engine power were verified by comparing those with the measured values, the suggested method was regarded to be acceptable. However, there was a limitation to apply the method on the prediction of the RPM and engine power of a ship. Since the information of route, speed, and environmental conditions required for estimating the RPM and engine power is generally regarded as the intellectual property of a shipping company, it is difficult to secure the information on a shipyard. In this paper, the RPM and engine power of the 151K LNGC was estimated using the combination of Automatic Identification System (AIS) and European Centre for Medium-Range Weather Forecasts (ECMWF) database in order to replace the full-scale measurement. The simulation approach, which was suggested in the previous research, was identically applied to the prediction of RPM and engine power. After the results based on the AIS and ECMWF database were compared with those obtained from the full-scale measurement data, the feasibility was briefly reviewed.