• Title/Summary/Keyword: Shipbuilding execution scheduling

Search Result 3, Processing Time 0.016 seconds

Design and Development of Scenario-Based Simulation System to Improve Shipbuilding Execution Scheduling Assessment -A Case Study on Panel Line- (시나리오 기반 조선 실행계획 평가 향상을 위한 시뮬레이션 시스템 개발 -패널라인 개발 사례를 중심으로-)

  • Back, Myunggi;Kim, Youngmin;Hwang, Inhyuck;Lee, Kwang-Kook;Ryu, Cheolho;Shin, Jong Gye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.3
    • /
    • pp.211-223
    • /
    • 2013
  • Today's ever-increasingly competitive shipbuilding market makes it essential for a shipbuilding company to have more efficient production processes and higher productivity as well as better design ability to obtain its competitiveness. A well-established production execution schedule plays an indispensable role to achieve this goal. Most shipbuilding companies carry out an evaluation on their mid-term plan once it is established. However, no evaluation activity exists for a production execution schedule, because practically all the companies depend on the field workers for the production execution scheduling. In this study, a prototype of a ship production execution schedule evaluation system is developed based on the component based design (CBD) methodology. This system enables one to make a production execution schedule that reflects up-to-date shipyard situation and to validate whether the schedule is feasible or not by running a production simulation according to the schedule. Users can also make use of the system as a decision supporting tool that compares several different execution schedules and evaluates which one is the best execution schedule.

Development of Shipbuilding Execution Scheduling Support System using Mobile Device : A Case Study for a Panel Block Assembly Shop (모바일 기기를 활용한 조선 생산 실행계획 지원 시스템 개발 : 판넬라인 개발 사례를 중심으로)

  • Hwang, Inhyuck;Song, Jungkyu;Back, Myunggi;Ryu, Cheolho;Lee, Kwangkook;Shin, Jong Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.262-271
    • /
    • 2013
  • Owing to the development of mobile communication technology during the last a few years, the number of users of mobile devices such as the smartphone and the tablet PC has increased rapidly. As a result, the range of applications of the mobile devices has also been greatly expanded from an application for the convenience of daily life to an application for assisting the operations of industrial fields. Especially, portability of mobile devices can provide great help in collecting and using information on the production site. In shipbuilding production processes, it is difficult to collect changes of circumstance in the field and reflect the changes to schedule due to the low production automation rate and frequent changes in schedule. In this study, we propose a system to solve the problems of shipbuilding production processes such as the ones described above by using mobile devices. First of all, we organize the production information and production processes of the panel line through the analysis of shipyard panel line operations. Next, we have developed a system that can support the production execution plan of the panel line and monitor the production processes in the field. The system was developed utilizing application virtualization to allow access to the system from various platforms of mobile devices and PC's. The system was implemented using ooCBD methodology considering the future expansion of the system and ease of maintenance.

Framework design of simulation-based ship production execution system(SPEXS) in a shipyard (시뮬레이션 기반 조선생산실행시스템 프레임워크 설계)

  • Lee, Kwang-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1854-1864
    • /
    • 2011
  • Production planning is one of the most important activities in shipbuilding enterprises. Shop-floor supervisors and planners still do not have enough information to effectively analyze shop operations because of the difference between production planning and shop-floor scheduling. In this paper, process analysis was conducted between production planning and shop-floor control to clarify the difference, and the necessity of the manufacturing execution system(MES) was derived in a shipyard. Therefore, the simulation-based ship production execution system(SPEXS) was defined by analyzing characteristics of MES. The architectural functions of the system were deducted from the process of requirement analysis. The SPEXS' framework was constructed on the basis of the architectural functions. This framework will provide more reliable production schedules and allow engineers to plan and control shop operations in real-time.