• Title/Summary/Keyword: Ship system

Search Result 4,052, Processing Time 0.037 seconds

A Study on the Development of Information System for the Ship Survey to Support Port State Control (항만국 통제 지원 선박검사 정보시스템 개발에 관한 연구)

  • 박주용;강병윤;이경철;정진욱
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.165-170
    • /
    • 2000
  • Port State Control (PSC) is the inspection of foreign ships in national ports for the purpose of verifying th\ulcorner the condition of the ships and its equipments comply with the requirement of international conventions and the ship is manned and operated in compliance with applicable international laws. On the other hand, check items in PSC are nearly similar to periodical survey of Classification Societies, because they have the same background regarding safety and maritime pollution prevention. The purpose of this study is to develope computer-aided information systems for ship inspection item which is useful for effective implementation of Port State Control. For this work, the status of PSC is reviewed, and the related scheme of ship survey system in Classification Societies is investigated. On these bases, a computer software integrated database system and object-oriented technique is developed. The developed system is expected helpful to establish and maintain an effective system of Port State Control.

  • PDF

Torsional Strength of CFRP Material for Application of Ship Shaft System (CFRP 소재의 선박용 축계 적용을 위한 비틀림강도 특성)

  • Kim, Min-kyu;Shin, Ick-gy;Kim, Seon Jin;Park, Dae Kyeom;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.431-439
    • /
    • 2021
  • The Carbon Fiber Reinforced Plastic (CFRP) material is recently widely used in the composite industry with excellent rigidity and lightweight properties. A ship shaft system requires high standards of safety on torsional strength capacity. The purpose of this study is to verify the applicability of a CFRP shaft system to take the place of metal shaft systems for ships from a viewpoint of torsional strength. Selection of materials and manufacturing method are executed then two geometrically scaled CFRP shaft system models were designed and manufactured with three-layer patterns. The models were used for a series of torsion tests under single and repeated torsional loading conditions. Detailed design and manufacturing methods for a CFRP ship shaft system are documented and the torsion test results are listed in this paper. The results of this study could be useful guidelines on the development of CFRP ship shaft systems and a test method.

Model based Simulation of Container Loading/Unloading

  • Lee, Soon-Sup
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.170-175
    • /
    • 2012
  • Currently, most logistics use containers. The construction of new port and high speed medium size container ship for the transportation of merchandise have become very important. The problem of ship stability is also important because of its direct influence on the loss of human life, ships, and merchandise. The stability of a container ship during its operation is not a large problem because it is well considered in the design process. However, the assessment of ship stability during container loading/unloading in port still depends on the expertise of experienced personnel. In this paper, a model based simulation system is introduced, which is able to assess ship stability during container loading/unloading, using ENVISION, a general purpose simulation system.

A Study on the Engine-CPP Control of a Ship Propulsion System (선박 추진 시스템의 엔진-CPP 통합적 제어에 관한 연구)

  • 김영복
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.427-432
    • /
    • 1998
  • There are many demands for ship control system and many studies have been proposed. For example, if a ship diesel engine is operated by consolidated control with Controllable Pitch Propeller(CPP), the minimum fuel consumption is achieved, satisfying the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption. In this context of view, this paper presents a controller design method for a ship propulsion system with CPP by Linear Matrix Inequality(LMI) which satisfies the given $H_{\infty}$ control performance and robust stability in the presence of physical parameter perturbations. The validity and applicability of this approach are illustrated through a simulation in the all operating ranges.

  • PDF

Case Study of the Identification of Ship Zone for Generalize of Fire Safety Module in Korean e-Navigation System (한국형 e-Navigation 시스템에서 화재안전모듈 범용화를 위한 선박구역 식별에 관한 사례연구)

  • Kim, Byeol;Hwang, Kwang-Il;Moon, Serng-Bae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.346-347
    • /
    • 2018
  • This study is a case study on ship zone identification for the generalization of fire safety module in Korean e-Navigation system and assessed the method of dividing the area of the ship based on the location of the fire detector of the target ship.

  • PDF

A Study on the Modeling of Transitional Lateral Force Acting on the Berthing Ship by CFD

  • Kong, Gil-Young;Lee, Yun-Sok;Lee, Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1196-1202
    • /
    • 2004
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to estimate clearly the magnitudes and properties of hydrodynamic forces acting on ship hull in shallow water. A numerical simulation has been performed to investigate quantitatively the hydrodynamic force according to water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. By comparing the computational results with the experimental ones, the validity of the CFD method was verified. The numerical solutions successfully captured some features of transient flow around the berthing ship. The transitional lateral force in a state ranging from the rest to the uniform motion is modeled by using the concept of circulation.

Development of the Realtime Ship Position Information System using the GPS (GPS를 이용한 실시간 선박위치정보시스템 개발)

  • 양형선;신철호
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2000
  • In this paper, we developed the Realtime Ship Position Information System and the software in relation to the system, which consists of the on-board system and the shore-based system. The on-board system is composed a GPS receiver, a computer, and a modem. The shore-based system is composed of a telephone, a modem and a computer. Both systems are operated by the data communication program The system displays automatically the ship's movement on the digital chart by using the ship's position acquired by a GPS receiver via INMARSAT-A communication system. The results presented in many experiments indicate that the system in processing the position data well during the transmission and reception.

  • PDF

Design the Autopilot System of using Fuzzy Algoritim

  • Kim, Young-Hwi;Bae, Gyu-Han;Park, Jae-Hyung;Kang, Sin-Chool;Lee, Ihn-Yong;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.296-300
    • /
    • 2003
  • The autopilot system targets decreasing labor, working environment improvement, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization. Dynamic Ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And Load Condition of ship as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that is disturbance act in non-linear from, become factor who make serv ice of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using fuzzy algorithm ,Design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

Development of a Framework for Improving Efficiency of Ship Vibration Analysis (선박 전선 진동해석 효율성 향상을 위한 프레임워크 개발)

  • Cho, Dae-Seung;Kim, Jin-Hyeong;Choi, Tae-Muk;Kim, Kyung-Soo;Choi, Sung-Won;Jung, Tae-Seok;Lee, Do-Kyung;Seok, Ho-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.761-767
    • /
    • 2011
  • Free and forced vibration analysis of the global ship structure using the 3-dimensional finite element(FE) method requires not only the specialized knowledge such as ship structure interacted with fluid, damping and various excitations due to propulsion system but also time-consuming manual tasks in FE modeling, analysis and response evaluation. As a result, the quality of the vibration analysis highly depends on engineer's expertise and experience. In this study, a framework system to improve the efficiency of global ship vibration analysis is introduced. The system promising the utilization of MSC/Patran and MSC/Nastran consists of various modules to support data management, FE modeling of ship structure and loading, input deck generation for free and forced vibration analysis, data extraction and evaluation of analysis results, and databases for FE models of marine diesel engines and vibration criteria. The system may be useful for pursuing standardization of uncertain analysis factors as well as reducing time, cost and human dependency in ship vibration analysis.

Development of a Framework for Improving Efficiency of Ship Vibration Analysis (선박 전선 진동해석 효율성 향상을 위한 프레임워크 개발)

  • Cho, Dae-Seung;Kim, Jin-Hyeong;Choi, Tae-Muk;Kim, Kyung-Soo;Choi, Sung-Won;Jung, Tae-Seok;Lee, Do-Kyung;Seok, Ho-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.779-784
    • /
    • 2011
  • Free and forced vibration analysis of the global ship structure using the 3-dimensional finite element(FE) method requires not only the specialized knowledge such as ship structure interacted with fluid, damping and various excitations due to propulsion system but also time-consuming manual tasks in FE modeling, analysis and response evaluation. As a result, the quality of the vibration analysis highly depends on engineer's expertise and experience. In this study, a framework system to improve the efficiency of global ship vibration analysis is introduced. The system promising the utilization of MSC/Patran and MSC/Nastran consists of various modules to support data management, FE modeling of ship structure and loading, input deck generation for free and forced vibration analysis, data extraction and evaluation of analysis results, and databases for FE models of marine diesel engines and vibration criteria. The system may be useful for pursuing standardization of uncertain analysis factors as well as reducing time, cost and human dependency in ship vibration analysis.

  • PDF