• Title/Summary/Keyword: Ship structures

Search Result 592, Processing Time 0.036 seconds

On the Plastic Deformation of Polar-Class Ship's Single Frame Structures Subjected to Collision Loadings (충돌하중을 받는 빙해선박 단일 늑골 구조의 소성변형에 관한 연구)

  • Min, Dug-Ki;Shin, Dong-Wan;Kim, Sin-Ho;Heo, Yeoung-Mi;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.232-238
    • /
    • 2012
  • The effects of temperature on the structural behavior of polar class vessels have been experimentally and numerically investigated. Experiments were carried out on single frame structures made of steel material, DH36, which is used for outer shell of the vessels making transit through the polar region. A knife edge type striker was dropped down onto single frame structures. The temperatures of the single frames were set to $-30^{\circ}C$, $-50^{\circ}C$ and room temperature. The deflection around the mid-point of the single frame was measured and numerically simulated using finite element model. Strain rate effect on the structural behavior has been investigated and turned out that the strain rate effect can be neglected. From the results of the experiment and numerical analyses, it has been noticed that the permanent deflection at lower temperature was reduced due to a temperature hardening of material as expected.

Shape Design Optimization of Ship Structures Considering Thermal Deformation and Target Shape (열 변형과 목적형상을 고려한 선체구조의 형상 최적설계)

  • Park, Sung-Ho;Choi, Jae-Yeon;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.430-437
    • /
    • 2010
  • In this paper, we develop a shape design optimization method for thermo-elastoplasticity problems that is applicable to the welding or thermal deformation problems of ship structures. Shell elements and a programming language APDL in a commercial finite element analysis code, ANSYS, are employed in the shape optimization. The point of developed method is to determine the design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of surfaces are selected as the design parameters. The modified method of feasible direction (MMFD) and finite difference sensitivity are used for the optimization algorithm. Two numerical examples demonstrate that the developed shape design method is applicable to existing hull structures and effective for the structural design of ships.

A Study on the Fatigue Strength Improvement using Weld Toe Burr Grinding (용접토우부의 그라인딩에 의한 피로강도 증대효과에 대한 연구)

  • Kang, Sung-Won;Kim, Myung-Hyun;Choi, Jae-Young;Kim, Wha-Soo;Paik, Young-Min
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.42-47
    • /
    • 2006
  • While it is known that the weld toe grinding method may give 3.4 times of fatigue strength improvement, this improvement may significantly vary according to weld bead shapes and loading modes. Although tremendous interest have been given in improving fatigue strength improvement for ship structures, quantitative results are yet in need. In this context, a series of fatigue tests is carried out for a type of test specimen that are typically found in ship structures. Weld burr grinding is carried out using a electric grinder in order to remove surface defects and improve the weld bead profile. The test results are compared with the same type of test specimen without applying the fatigue improvement technique in order to obtain a quantitative measure of the fatigue strength improvement. On the other hand, both hot spot stress and structural stress methods are employed to compare the effectiveness of the two methods in evaluating the fatigue strength improvement of welded structures.

Experiments and Finite Element Analysis for the Estimation of Stress Relief in Welded Structures (반복 하중을 받는 용접 구조물의 잔류 응력 저감 파악을 위한 유한요소 해석 및 실험적 연구)

  • Yang, Yong-Sic;Kang, Joong-Kyoo;Lee, Jang-Hyun;Kim, Sung-Chan;Hwang, Se-Yum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.238-245
    • /
    • 2011
  • Welding inevitably introduces the residual stresses which affect the fatigue strength of the joint structure. The mitigation of fatigue strength depends on the residual stress magnitude and distribution. Stress relief analyses are of practical interest for all cyclic loaded welded structures, such as ships and offshore structures. In order to estimate the effects of relaxation of residual stresses in the welded structure, this paper presents a finite element analysis procedure and experimental results for the welded structure. Cruciform specimens joint by MAG welding have been tested to measure the released stress. Relieved welding residual stresses obtained by finite element analysis are compared with those measured by experiment.

Welding Distortion Characteristics of Door Openings According to Changing Shape of Stiffener (Door Opening부의 보강재 형상변화에 따른 용접 변형 특성)

  • Lee, Dong-Hun;Seo, Jung-Kwan;Yi, Myung-Su;Hyun, Chung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.153-160
    • /
    • 2019
  • Welding often results in welding distortion during the assembly process. The welding distortion of thin-plate structures such as the living quarters of ships and offshore installations is a more significant problem than in the case of thick-plate structures. Pre-stressing/heating and fairing, which are additional works to mitigate and control welding distortion, are inevitable, and the construction planning is accordingly delayed. In order to prevent welding distortion and minimize the additional work during the assembly process, increasing the plate thickness and/or the number of stiffeners may be a simple solution, but it may give rise to problems related to cost and weight. In this study, the welding distortion control effect of the type of stiffeners on the door openings of various living quarter structures was investigated using an experimental method and a finite element method. The results showed the feasibility of mitigating and controlling the welding distortion, and the optimum selection of the type of stiffeners was confirmed.

Experimental Study of Wave Run-up on Semi-submersible Offshore Structures in Regular Waves (규칙파 중 반잠수식 해양구조물 주위의 런업에 관한 실험 연구)

  • Kim, Namwoo;Nam, Bo Woo;Cho, Yoonsang;Sung, Hong Gun;Hong, Sa Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.6-11
    • /
    • 2014
  • This paper presents the results of an experimental study of wave run-ups on a semi-submersible offshore structure. A series of model tests with a 1:80 scale ratio were carried out in the two-dimensional wave basin of MOERI/KIOST. The experimental model had two columns and one pontoon. The model was fixed and wave elevations were measured at five points per column. Two different draft (operational & survival) conditions and three wave heights were considered under regular wave conditions. First, the nonlinear characteristics of wave run-ups are discussed by using the time series data. Then, the wave heights are compared with numerical results based on the potential flow model. The comparison shows fairly good correlation between the experiments and computations. Finally, wave run-ups under the operational and survival conditions are suggested.

Integration of Ship Outfitting BOM with Lifecycle Stages (선박 의장 BOM을 Lifecycle을 고려한 BOM 통합 방안 연구)

  • Kim, Dae-Seok;Lee, Kyung-Ho;Lee, Jang-Hyun;Lee, Jung-Min;Lee, Kwang;Kim, Jin-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.187-196
    • /
    • 2011
  • Generally, BOM (Bill of Material) means a part list which is needed to manufacture or assemble a product or part. During manufacturing processes, BOM is inevitably required for most of enterprise processes such as design, procurement, production planning/control, resource planning, and financial works. Every manufacturing industry uses many kinds of BOM's that are adjusted to the requirement of functions of their work division. Moreover, BOM evolves in different forms according to the product development phases such as conceptual design; function design, detail design, and production design because it is necessary to use different product structures to keep product data generated throughout the lifecycle of a product. This includes all data and information related to the all the product development phases. Shipbuilding works also are processed and controlled based on BOM. However, effective maintenance of ship outfitting BOM data is getting difficult as the amount and complexity of data have increased due to variety and long lifecycle of ship. For the effective management of outfitting BOM data, two aspects must be considered. One is how to classify numerous BOMs type and the others how to display BOMs. So this study suggests a method to classify BOM types and propose two categories - Structure BOM, Display BOM. Base on this result, we propose the integrated ship outfitting BOMs model and analysis outfitting BOMs.

Estimation of Buckling and Ultimate Collapse Behaviour of Stiffened Curved Plates under Compressive Load

  • Park, Joo-Shin;Ha, Yeon-Chul;Seo, Jung-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.37-45
    • /
    • 2020
  • Unstiffened and stiffened cylindrically curved plates are often used in ship structures. For example, they can be found on a deck with a camber, a side shell at the fore and aft parts, and the circular bilge part of a ship structure. It is believed that such cylindrically curved plates can be fundamentally modelled using a portion of a circular cylinder. From estimations using cylindrically curved plate models, it is known that the curvature generally increases the buckling strength compared to a flat plate under axial compression. The existence of curvature is also expected to increase both the ultimate and buckling strengths. In the present study, a series of finite element analyses were conducted on stiffened curved plates with several varying parameters such as the curvature, panel slenderness ratio, and web height and type of stiffener applied. The results of numerical calculations on stiffened and unstiffened curved plates were examined to clarify the influences of such parameters on the characteristics of their buckling/plastic collapse behavior and strength under an axial compression.