• Title/Summary/Keyword: Ship simulation

Search Result 1,328, Processing Time 0.027 seconds

Maritime Education and Training(MET) by Ship Handling Simulator (선박조종 시뮬레이터를 이용한 해사교육 및 훈련)

  • Chang-Je Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.81-89
    • /
    • 2002
  • Several full mission simulators have been installed since about 10 years ago in Korea. The newly established Marine Simulation Training and Research Center at Korea Maritime University has played a key role for education and training of both cadets and in-service officers trainees, and for research on Korea ports such as Jeju international cruise port, Ulsan SBM and Kwangyang container port and many others. This study mainly focuses maritime education and training on the ship handling simulation and the bridge resource management conducted by Korea Maritime University.

  • PDF

Development of Simulation Program to Predict Surface Ship Maneuverability (수상선의 조종성능을 추정하기 위한 시뮬레이션 프로그램 개발)

  • Gang, Chang-Gu;Seo, Sang-Hyeon
    • 한국기계연구소 소보
    • /
    • s.13
    • /
    • pp.123-141
    • /
    • 1984
  • The safety aspects of ship handing have become increasingly important recently, due to the changes in sea transportation. These are characterizes by larger units, increased traffic density on sea lane, sea transport of dangerous cargo, etc. In addition, as a economic aspect of ship handing, it has obtained an increased attention in connection with port development and consideration of allowable ship size for existing ports. One method for evaluation of maneuvering problems is simulation on a computer by means of a mathematical model of the ship maneuvering motion. The present report describes the elements of a mathematical model for ship maneuvering and gives some results of maneuvering predictions through the simulation.

  • PDF

A Study on Ship's Maneuverability Evaluation by Real Ship Test (선박조종성능 평가를 위한 실선 실험연구)

  • Im, Nam-Kyun;Han, Song-Hee;Nguyen, Thanh Nhat Lai
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.383-389
    • /
    • 2011
  • At the design stage, it is very important to know the ship maneuvering characteristics from the view point of ship performance and for the safety of navigation. IMO only gives some criteria for ships in full load even keel condition. However, the ship generally is operated not only in full load condition but also in half load condition or ballast condition. Therefore we must estimate the ship maneuvering in different loading condition to ensure that the ship will satisfy with IMO rules and navigate safely in every condition. In this paper, we have investigated the maneuvering characteristics of a ship by simulation and experiments with real ship. By comparing with the results of simulation, the real ship tests conform with simulation test and previous researches. Therefore, the method base on real data is well done to estimate the ship maneuvering in different loading conditions. The change of ship's manoeuverability accoriding to ship's operation conditions was estimated.

Evaluation of Operational Rules for Container Terminals Using Simulation Techniques (시뮬레이션 기법을 이용한 컨테이너터미널 운영규칙의 평가)

  • 장성용;임진만
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.33-41
    • /
    • 2002
  • This paper deals with the development of simulation model for the container terminal consisting of 3 berths, 8 container cranes, 16 yard blocks with each yard cranes and 90 yard trucks in order to evaluate the various operational rules. The proposed operational rules are 3 ship dispatching rules, 3 berth allocation rules, 2 crane allocation rules, 2 yard allocation rules and 2 yard truck allocation rules and 4 performance measures like ship time in the terminal, ship time in the port, the number of ships processed and the number of containers handled are considered. The simulation result are as follows. 1) no difference among 3 ship dispatching rules, 2) berth allocation rules depends on performance measures 3) dynamic crane allocation is better than fixed policy 4) pooling yard allocation is better than short distance yard allocation rules and 5) fixed yard truck allocation by berth is a little better than pooling policy.

  • PDF

A Development of Evaluation System for trainee on the Fire Fighting Ship Training Simulation (소방선 훈련 시뮬레이터 훈련원 평가 시스템 개발)

  • Oh, Myung-Hyun;Kim, Han-Gyu;Kim, Jeong-Eun;Kim, Eung-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.166-169
    • /
    • 2011
  • This system is a FFS(Fire Fighting Ship) Training System to simulate real FFS Ship. In this system, Trainees get the skill of maneuvering and fire fighting and ability to make the best of situation by experiencing various scenario from instructors. In this case, There need to be an evaluation system to evaluate trainees objectively and acceptably. And the FFS Training Evaluation System was developed.

  • PDF

Resistance Performance Simulation of Simple Ship Hull Using Graph Neural Network (그래프 신경망을 이용한 단순 선박 선형의 저항성능 시뮬레이션)

  • TaeWon, Park;Inseob, Kim;Hoon, Lee;Dong-Woo, Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.393-399
    • /
    • 2022
  • During the ship hull design process, resistance performance estimation is generally calculated by simulation using computational fluid dynamics. Since such hull resistance performance simulation requires a lot of time and computation resources, the time taken for simulation is reduced by CPU clusters having more than tens of cores in order to complete the hull design within the required deadline of the ship owner. In this paper, we propose a method for estimating resistance performance of ship hull by simulation using a graph neural network. This method converts the 3D geometric information of the hull mesh and the physical quantity of the surface into a mathematical graph, and is implemented as a deep learning model that predicts the future simulation state from the input state. The method proposed in the resistance performance experiment of simple hull showed an average error of about 3.5 % throughout the simulation.

Study on three-dimensional numerical simulation of shell and tube heat exchanger of the surface ship under marine conditions

  • Yi Liao;Qi Cai;Shaopeng He;Mingjun Wang;Hongguang Xiao;Zili Gong;Cong Wang;Zhen Jia;Tangtao Feng;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1233-1243
    • /
    • 2023
  • Shell-and-tube heat exchanger (STHX) is widely used by virtue of its simple structure and high reliability, especially in a space-constrained surface ship. For the STHX of the surface ship, roll, pitch and other motion of the ship will affect the heat transfer performance, resistance characteristics and structural strength of the heat exchanger. Therefore, it is urgent to carry out numerical simulation research on three-dimensional thermal hydraulic characteristics of surface ship STHX under the marine conditions. In this paper, the numerical simulation of marine shell and tube heat exchanger of surface ship was carried out using the porous media model. Firstly, the mathematical physical model and numerical method are validated based on the experimental data of a marine engine cooling water shell and tube heat exchanger. The simulation results are in good agreement with the experimental results. The prediction errors of pressure drop and heat transfer are less than 10% and 1% respectively. The effect of marine conditions on the heat transfer characteristics of the heat exchanger is investigated by introducing the additional force model of marine condition to evaluate the effect of different motion parameters on the heat transfer performance of the heat exchanger. This study could provide a reference for the optimization of marine heat exchanger design.

A Study on the Analysis of Ship Officers' Collision-Avoidance Behavior During Maritime Traffic Simulation (해상교통분석 시뮬레이션을 위한 항해사의 충돌회피 행동분석에 관한 연구)

  • Kim, Hongtae;Ahn, Young-Joong;Yang, Young-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.469-476
    • /
    • 2020
  • Modeling and Simulation (M&S) systems which deal with situational complexity often require human involvement due to the high-level decision-making that is necessary for ship movement, navigation, control center management, shipping company logistics, meteorological system information, and maritime transportation GIS. In order to properly simulate maritime traffic, it is necessary to accurately model the human decision-making process of the ship officer, including aspects of the ship officer's behavioral tendencies, personal navigation experience, and pattern of voyage errors, as this is the most accurate way in which to reproduce and predict realistic maritime traffic conditions. In this paper, which looks at agent-based maritime traffic simulation, we created a basic survey in order to conduct behavior analysis on ship operators' collision avoidance strategies. Using the information gathered throughout the survey, we developed an agent-based navigational behavior model which attempts to capture the behavioral patterns of a ship officer during an instance of ship collision. These results could be used in the future in further developments for more advanced maritime traffic simulation.

The Estimation of Productivity Considering New Technology Port- Equipment By Using Simulation (시뮬레이션을 활용한 신기술 항만장비의 생산성 추정)

  • Kim, Dong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.237-246
    • /
    • 2015
  • In this paper, Improved productivity models of container terminal are provided by utilizing a simulation considering Tandem-lift Quay Crane and transport vehicle of container's high productivity 'Alternative ship-to-yard vehicles.' Feature of this method is deriving the data of tandem-lift Quay Crane and Alternative ship-to-yard vehicles, estimating the productivity model of tandem-lift Quay Crane by using regression analysis. Tandem-lift Quay Crane is equipment of loading and unloading to increase productivity approximately by 2 time existing (single, twin) Quay Crane by dealing with four 20ft containers or two 40ft containers at the same. Alternative ship-to-yard vehicles can transfer containers(4TEU) more than existing Yard Tractor. This paper is deriving the optimal combination showing the highest productivity by using simulation considering Tandem-lift Quay Crane and Alternative ship-to-yard vehicles on container terminals and developing estimating model of productivity by using regression analysis using data of simulation.

A site-specific CFD study of passing ship effects on multiple moored ships

  • Chen, Hamn-Ching;Chen, Chia-Rong;Huang, Erick T.
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.43-77
    • /
    • 2019
  • A local-analytic-based Navier-Stokes solver has been employed in conjunction with a compound ocean structure motion analysis program for time-domain simulation of passing ship effects induced by multiple post-Panamax class ships in the exact condition of a real waterway. The exact seabed bathymetry was reproduced to the utmost precision attainable using the NOAA geophysical database for Virginia Beach, NOAA nautical charts for Hampton Roads and Norfolk harbor, and echo sounding data for the navigation channel and waterfront facilities. A parametric study consists of 112 simulation cases with various combinations of ship lanes, ship speeds, ship heading (inbound or outbound), channel depths, drift angles, and passing ship coupling (in head-on or overtaking encounters) were carried out for two waterfront facilities at NAVSTA Norfolk and Craney Island Fuel Terminal. The present paper provides detailed parametric study results at both locations to investigate the site-specific passing ship effects on the motion responses of ships moored at nearby piers.