• Title/Summary/Keyword: Ship pilot

Search Result 102, Processing Time 0.021 seconds

A Random Forest Algorithm-based Accident Prediction to Prevent Marine Pilot Occupational Accidents

  • Gokhan Camliyurt;Won Sik Kang;Daewon Kim;Sangwon Park;Youngsoo Park
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.415-416
    • /
    • 2022
  • Marine pilot occupational accidents during transfer to/from the ship are at the top of the agenda after several safety campaigns by IMPA and individual attemptsThere is multiple transfer method for the marine pilot, but a most common way is to use the pilot cutter. This paper aims to predict marine pilot occupational accidents before it occurs by using historical data. Since the problem depends on several variables, this paper develops a model by using the random forest method to predict marine pilot accidents before happening with the random forest method by using RStudio software

  • PDF

A study on the Improvement of control performance of Auto Steering System by Fuzzy Scheme (퍼지기법에 의한 자동조타기의 제어성능개선에 관한 연구)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2671-2674
    • /
    • 2005
  • Auto Pilot System is the device for course keeping or course altering to ship's steering system. The purpose of automatic steering system is to keep the ship's course stable with the minimum course and rudder angle. Recently, modem control theories are being used widely in analyzing and designing the ship system. Though P.I.D type auto pilots are widely used in ships, the stability and the adjusting meyhods are not clarified. In this paper the authors proposed auto pilot system with Fuzzy Logic Controller. In the fuzzy control the things that the actual operators of a steering wheel has acquired through their experience can be logically described by the Lingustic Control Rule. The characteristic of the control system were investi gated through the computer simulation results. it was found that the fuzzy logic control was more efficient than the conventional system.

  • PDF

The System Design of Virtual Reality Ship Simulator (가상현실 선박 시뮬레이터의 시스템 설계)

  • 임정빈;김현종
    • Proceedings of KOSOMES biannual meeting
    • /
    • 1999.03a
    • /
    • pp.7-17
    • /
    • 1999
  • This paper describes design techniques on the ship simulator system adopting virtual reality technology. Ship handling, generally, is done by the multi workers such as Captain, Officer, Pilot and Quartermaster. With this special fact, we proposed multi client-server network and hardware architecture which fit to the Virtual Reality Ship Simulator.

  • PDF

Determination of Optimal Route Based on AIS and Planned Route Information

  • Tamaru, Hitoi;Hagiwara, Hideki;Ohtsu, Kohei;Shoji, Ruri;Takahashi, Hironao;Nakaba, Akira
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.167-176
    • /
    • 2004
  • The authors have newly developed the “Port Traffic Management System (PTMS)”. The PTMS provides each ship with the detailed planned routes of all the ships entering/leaving the port. This system also has a function to predict the encounter situations between own ship and other ships in the future. Based on information of the present positions, speeds and planned routes of the own ship and other ships, it is possible to predict when and where the own ship will have dangerous encounters with other ships in the future. The software of PTMS was developed from 2001. Then onboard experiments using small training ships equipped with actual AIS were performed in June 2003. From the results of these onboard experiments, the usefulness of PTMS was clarified. In addition to these onboard experiments, the effectiveness of PTMS was confirmed by comprehensive simulator experiments. In the simulator experiments, captains/pilot maneuvered a training ship/container ship in congested waters using PTMS. [t was assumed that all ships have PTMS and send their planned routes. After the simulator experiments, captains/pilot suggested that it is very beneficial if the optimal route of own ship can be automatically calculated. In response to this suggestion, software to calculate the optimal route of own ship using Dynamic Programming was developed. This software calculates the minimum time route from the present position to the destination keeping the danger of collision against other ships under predetermined level. From the result of calculations for multi-encounter situations, it was confirmed that the developed software can provide safe and time-saving route.

  • PDF

Study on the Control Algorithms for the Auto-Pilot System (Auto-Pilot 시스템에 적용되는 제어 알고리듬에 대하여)

  • Sang-Hyun Suh;Yong-Gyu Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.38-44
    • /
    • 1994
  • Control Algorithms of the Auto-Pilot system have been studied for the navigational economics and crew's comfortability since 1960's, when Auto-Pilot system was installed on the trans-ocean ships. At the beginning the PD control algorithm was used with the weather adjust function introduced to reduce the response of the auto-pilot system to the high frequency wave excitation in rough sea. In this study, the optimal and adaptive control theories are applied for the auto-pilot control algorithm. And those two algorithms are compared through the pre-defined cost function to obtain the most effective control technique for the Auto-Pilot system. The parameterization of the ship meneuvering equation for the adaptive control algorithm design procedure was examined and the advantage of the adaptive control was found through the simulation result with the wrong initial parameter value.

  • PDF

A Study on the Development of Auto Pilot Device at Shallow Water for the Docking of Fishing Boat (천수섬에서 어선 정박을 위한 자동도선시스템에 관한 연구)

  • Lee, Kwi-Joo;Benilov, Alexander Y;Sin, Young-Kuwn;Park, Myung-Kyu;Kim, Kyoung-Hwa;Park, Weon-Me
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.144-148
    • /
    • 2004
  • Generally a ship in a port or canal is guided by tugboat(s), while the ship engine(s) and steering mechanism idle. The shortcomings of this method are insufficient in course keeping ability, danger of collision with waterside structures, time-consuming preparation for tugging, as well as the need to maintain tugboats. A new technology for ship guiding, based on the physical principle of interaction of a solid body with aerated liquids has been developed [1]. Model tests were carried out for the verification of system at slow speed by engine operating conditions and with an idle steering. The developed device has been proved to keep the ship on course safely.

Relationship between Maritime Pilot Injury and Nearmiss (항만 도선사 상해사고와 준사고의 관계)

  • Sangwon Park;Byoung Jae Yoon;So-Ra Kim;Young-soo Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.120-127
    • /
    • 2023
  • Maritime pilots are always exposed to unpredictable risks present in the marine environment because they are boarding ships through pilot ladders or accommodation ladders at sea. Since the pilot plays an important role in securing the safety of a ship entering or departing from a port, an injury to the pilot substantially affects the overall safety of the ship. The purpose of this study is to analyze pilot injuries and predict accidents. For this purpose, pilot injury cases are analyzed and potential situations are identified through a survey. Pilot injuries are also predicted. The survey was analyzed using the IPA (Importance-Performance Analysis) methodology, and the binomial distribution and Poisson distribution were used to predict injury trends. As a result of the study, 316.8 nearmiss occurred per pilot injury, and if the current accident management system is maintained, the probability of pilot injury occurring within 3 months is 64.4%. Based on the research results, the need for a management system to prevent pilot injuries and reinforcement of maintenance and installation for pilot ladders was suggested.

Proposition of Automatic Ship Mooring Using Hydraulic Winch (유압 윈치를 이용한 선박 자동 계선법)

  • Hur, J.G.;Yang, K.U.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2013
  • The numerical analysis of the automatic ship mooring system which was equipped in the ship for trying to berth at the pier was performed in this study. The automatic ship mooring using hydraulic winch was a new method that had not need to change the existing devices and to help a pilot ship of outside. The numerical results of the proposed mooring system including ship motion were that the speed and rolling phenomenon of ship was affected by changing in the ship weight and affected the slope maintenance and yaw degree of ship if there has a trim of stern. Also, a static force of ship at the initial movement was important to calculate the mooring power. The moving force and inertial force of ship on the vertical direction was confirmed for the mooring stability. Therefore, the power and velocity of hydraulic mooring winch should be determined by considering the significant characteristics such as weight, velocity, inertial force and moving force of ship.

Design and Implementation of Intelligent Integrated Information System for Research Ship (시험 연구선의 지능형 통합정보시스템 구축에 관한 연구)

  • Jang, Won-Tae;Kim, Ki-Bak
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.990-995
    • /
    • 2010
  • We consider a problem of intelligent Integration Information system for research ship, and propose a design as one effective solution of the problem. The goals of the proposed design and system are as follows: management of engine, management of ship, researcher's work, education, training, manage schedule of the project, and thus to manage the whole life cycle of the research ship project. These goals are basically to facilitate and implement innovation- and enhancement-related activities which intelligent Integration Information system is fundamentally pursuing.

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.