• Title/Summary/Keyword: Ship hull

Search Result 1,253, Processing Time 0.027 seconds

A Study Viscous Drag Reduction of Three Dimensional Double Model (3차원 2중 모형의 점성 항력 감소화 연구)

  • 김시영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.209-219
    • /
    • 1994
  • The practical application of riblet to three dimensional double model, for viscous drag reduction, was studied analytically by intergal solution to three dimensional turbulent boundary layers. The case of a V-groove riblet technique on the shear stress and boundary layer velocities were incooperated in the computation of the flow over a smooth slender ship hull. As the results the possible mechanism of turbulent drag reduction by riblets are then suggested based on detailed studies of near-wall turbulence characteristics. And a turbulent boundary layer calculation scheme based on a momentum integral method was modified for the computer program. An example of the calculation results is presented.

  • PDF

Efficient Fault Detection Method for a Degaussing Coil System Based on an Analytical Sensitivity Formula

  • Choi, Nak-Sun;Kim, Dong-Wook;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Heung-Geun;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.135-141
    • /
    • 2013
  • This paper proposes an efficient fault detection method for onboard degaussing coils which are installed to minimize underwater magnetic fields due to the ferromagnetic hull. To achieve this, the method basically uses field signals measured at specific magnetic treatment facilities instead of time-consuming numerical field solutions in a three-dimensional analysis space. In addition, an analytical design sensitivity formula and the linear property of degaussing coil fields is being exploited for detecting fault coil positions and assessing individual degaussing coil currents. Such peculiar features make it possible to yield fast and accurate results on the fault detection of degaussing coils. For foreseeable fault conditions, the proposed method is tested with a model ship equipped with 20 degaussing coils.

Study on Catamaran Type Solar Boat Using the Pod Propulsion System (포드형 추진시스템을 이용한 카타마란형 솔라보트에 관한 연구)

  • Kim, Myoung-Jun;Chea, Gyu-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • In this study, design of hull and test of model boat were carried out with electric propulsion small boat driven by photo-voltaic energy. The shape of boat was made with catamaran type by considering the ship's stability, the light-receiving area from solar. According to calculation, when speed of model boat is 5 knots, it was estimated the available power for propulsion with 1.1[hp]. However, the natural energy such as solar energy is strictly dependent upon the climate conditions so the real boat speed is slightly lower than the estimated value.

CFD simulation of compressible two-phase sloshing flow in a LNG tank

  • Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-57
    • /
    • 2011
  • Impact pressure due to sloshing is of great concern for the ship owners, designers and builders of the LNG carriers regarding the safety of LNG containment system and hull structure. Sloshing of LNG in partially filled tank has been an active area of research with numerous experimental and numerical investigations over the past decade. In order to accurately predict the sloshing impact load, a new numerical method was developed for accurate resolution of violent sloshing flow inside a three-dimensional LNG tank including wave breaking, jet formation, gas entrapping and liquid-gas interaction. The sloshing flow inside a membrane-type LNG tank is simulated numerically using the Finite-Analytic Navier-Stokes (FANS) method. The governing equations for two-phase air and water flows are formulated in curvilinear coordinate system and discretized using the finite-analytic method on a non-staggered grid. Simulations were performed for LNG tank in transverse and longitudinal motions including horizontal, vertical, and rotational motions. The predicted impact pressures were compared with the corresponding experimental data. The validation results clearly illustrate the capability of the present two-phase FANS method for accurate prediction of impact pressure in sloshing LNG tank including violent free surface motion, three-dimensional instability and air trapping effects.

An Advanced Study on the Development of Marine Lifting Devices Enhanced by the Blowing Techniques

  • Ahn Haeseong;Yoo Jaehoon;Kim Hyochul
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2004
  • High lifting devices used for control purposes have received much attention in the marine field. Hydrofoils for supporting the hull, roll stabilizer fins for developing the motion damping performance, rudders for maneuverability are the well-known devices. In the present study, the ability of the rudder with flap to produce high lift was analyzed. The boundary layer control, one of the flow control techniques, was adopted. Especially, to build the blown flap, a typical and representative type of a boundary layer control, a flapped rudder was designed and manufactured so that it could eject the water jet from the gap between the main foil and the flap to the flap surface tangentially. And it was tested in the towing tank. Simultaneously, to know the information about the 2-dimensional flow field, a fin model with similar characteristics as the rudder model applicable for the motion control was made and tested in the cavitation tunnel. In addition, local flow measurements were carried out to obtain physical information, for example, a surface pressure measurement and flow visualization around the flap. And CFD simulation was used to obtain information difficult to collect from the experiment about the 2-dimensional flow.

Minimum Weight Design of Transverse Frames of Oil Tankers by Generalized Slope Deflection Method (일반화 경사처짐법에 의한 유조선 횡강도 부재의 최소 중량 설계)

  • Chang-Doo Jang;Seung-Soo Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.103-111
    • /
    • 1996
  • A generalized slope deflection method has already been developed by the authors from the existing one, and applied to the 3-dimensional structural analysis of tankers idealized as frame models to verify the effectiveness of the method from the analysis viewpoint. In this study, a minimum hull weight design program of tankers is developed to verify the effectiveness of the method from the design viewpoint by the combination of generalized slope deflection method and optimization method considering discrete design variables. By this program, it is possible to determine the scantling of each member of actual tankers that give minimum weight under given constraints. Also, a considerable weight saving has been found compared with existing ship.

  • PDF

Investigation on the Powering Performance Prediction for Azimuth Thrusters

  • Van, Suak-Ho;Yoon, Hyun-Se
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • Recently, the application of the electric propulsion system becomes popular because of its advantage over conventional propulsion. However, the complicated flow mechanism and interaction around the azimuth thruster are not fully understood yet, and the studies on the powering performance characteristics with azimuth/pod thrusters are now in progress. The experimental method developed in KRISO(Korea Research Institute of Ships & Ocean Engineering) is introduced and the results of the powering performance tests, consisting of resistance, self-propulsion and propeller open water tests for a cable layer with two azimuth thrusters are presented. For the analysis of powering performance with azimuth thrusters, it is necessary to evaluate the thrust/drag for components of a thruster unit, Extrapolation results could differ according to the various definitions of the propulsion unit; that is the pod, thruster leg and/or nozzle can be treated as hull appendages or as part of propulsion unit, The powering performances based on several definitions are investigated for this vessel. The results of the measurements for the 3-dimensional velocity distribution on the propeller plane are presented to understand the basis of the difference in propulsion characteristics due to the propeller rotational directions.

The Continuously Underwater Tunnelling Methods by Incremental launching Methods (연속압출공법(ILM)을 이용한 수저(水底)터널공법에 관한 연구)

  • Jung, Byung-Ryul;Ryu, Dong-Hun;Kim, Joon-Mo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.28-41
    • /
    • 2009
  • We know the several construction methods for underwater tunnel, but properly submerged concrete box type tunnel was mostly good structure stability and mostly shot length of tunnels. Submerged box type tunnel was buildup the unit segments in dry dock or ship yard by 10 to 20meters. The submerged box was composed with segments was join each together. It was installing the gate and waterproofing the coupling the front hull of a box. The complete submerged box rise up to the surface water, tow in the submerged box by tugboat, going to the destination of tunnel construction site. Beforehand dredge up soil at the bottom of a underwater, sinking the submerged box, connection together complete submerged box in underwater. The research and development ILM tunneling method is receiving careful study. Biggest weakness in submerged concrete box type tunnel was pressure waterproofing, box to box connecting, complete submerged boxes navigation and installation, after operation the submerged tunnel and management concrete box structure. It was positive evidence in submerged concrete box type tunnel. We make a practical application of the principle "the ILM tunneling method in underwater construction methods."

  • PDF

A Study on the Buckling Strength of Plate Panels with Opening (유공판의 좌굴강도에 관한 연구)

  • Kim, Ul-Nyeon;Choe, Ick-Heung;Kwon, Jin-Chil;Paik, Jeom-Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.210-224
    • /
    • 2010
  • The aim of the present study is to investigate the buckling strength of plates and stiffened panels with opening under transverse thrust and shear actions. It is observed that the existing design formulation for critical-buckling strength of plates are not valid for perforated plates, because the current design formulation trends can significantly overestimate or underestimate the load-carrying capacity of plates when plates have large opening and/or are thick. A series of eigen value and elastic.plastic large deflection finite element analyses are carried out with varying the aspect ratio of plate, the opening size and location on plate until and after the ultimate strength is reached. Based on the results obtained from the present study, closed-form design formulations for the elastic buckling strength of plates and stiffened panels with opening are derived. The derived design formulations are considered plasticity correction of the material and verified by experimental tests and results of nonlinear finite element computations.

Optimum Structural Design of D/H Tankers by using Pareto Optimal based Multi-objective function Method (Pareto 최적점 기반 다목적함수 기법에 의한 이중선각유조선의 최적 구조설계)

  • Na, Seung-Soo;Yum, Jae-Seon;Han, Sang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.284-289
    • /
    • 2005
  • A structural design system is developed for the optimum design of double hull tankers based on the multi-objective function method. As a multi-objective function method, Pareto optimal based random search method is adopted to find the minimum structural weight and fabrication cost. The fabrication cost model is developed by considering the welding technique, welding poses and assembly stages to manage the fabrication man-hour and process. In this study, a new structural design is investigated due to the rapidly increased material cost. Several optimum structural designs on the basis of high material cost are carried out based on the Pareto optimal set obtained by the random search method. The design results are compared with existing ship, which is designed under low material cost.