DOI QR코드

DOI QR Code

Efficient Fault Detection Method for a Degaussing Coil System Based on an Analytical Sensitivity Formula

  • Choi, Nak-Sun (Department of Electrical Engineering, Kyungpook National University) ;
  • Kim, Dong-Wook (Department of Electrical Engineering, Kyungpook National University) ;
  • Yang, Chang-Seob (The 6th R&D Institute-2, Agency for Defense Development) ;
  • Chung, Hyun-Ju (The 6th R&D Institute-2, Agency for Defense Development) ;
  • Kim, Heung-Geun (Department of Electrical Engineering, Kyungpook National University) ;
  • Kim, Dong-Hun (Department of Electrical Engineering, Kyungpook National University)
  • Received : 2013.03.04
  • Accepted : 2013.05.24
  • Published : 2013.06.30

Abstract

This paper proposes an efficient fault detection method for onboard degaussing coils which are installed to minimize underwater magnetic fields due to the ferromagnetic hull. To achieve this, the method basically uses field signals measured at specific magnetic treatment facilities instead of time-consuming numerical field solutions in a three-dimensional analysis space. In addition, an analytical design sensitivity formula and the linear property of degaussing coil fields is being exploited for detecting fault coil positions and assessing individual degaussing coil currents. Such peculiar features make it possible to yield fast and accurate results on the fault detection of degaussing coils. For foreseeable fault conditions, the proposed method is tested with a model ship equipped with 20 degaussing coils.

Keywords

References

  1. R. Donati and J. P. Le Cadre, IEE Proc. Radar Sonar Navig. 149, 221 (2002). https://doi.org/10.1049/ip-rsn:20020491
  2. O. Chadebec, J. Coulomb, J. Bongiraud, G. Cauffet, and P. Thiec, IEEE Trans. Magn. 38, 1005 (2002). https://doi.org/10.1109/20.996258
  3. O. Chadebec, J. Coulomb, G. Cauffet, and J. Bongiraud, IEEE Trans. Magn. 39, 1634 (2003). https://doi.org/10.1109/TMAG.2003.810429
  4. H. Liu and Z. Ma, Proc. Int. Conf. Mechatronics and Automation 3133 (2007).
  5. C. Yang, K. Lee, G. Jung. H. Chung, J. Park, and D. Kim, J. Appl. Phys. 103, 905 (2008).
  6. J. H. Lee, et al., IEEE Trans. Appl. Supercond. 14, 1906 (2004). https://doi.org/10.1109/TASC.2004.830926
  7. M. Minakami, IEEE Trans. Appl. Supercond. 14, 940 (2004). https://doi.org/10.1109/TASC.2004.830326
  8. N. Choi, G. Jeung, C. Yang, H. Chung, and D. Kim, IEEE Trans. Appl. Supercond. 42, 4904504 (2012).
  9. N. Choi, G. Jeung, S. Jung, C. Yang, H. Chung, and D. Kim, IEEE Trans. Magn. 48, 419 (2012). https://doi.org/10.1109/TMAG.2011.2177515
  10. K. Lee, H. Choi, W. Nah, I. Park, J. Kang, J. Joo, J. Byun, Y. Kwon, M. Sohn, and S. Kim, IEEE Trans. Magn. 45, 1478 (2009). https://doi.org/10.1109/TMAG.2009.2012684
  11. D. Kim, J. Sykulski, and D. Lowther, IEEE Trans. Magn. 41, 1752 (2005). https://doi.org/10.1109/TMAG.2005.846036
  12. DOT User Manual, Vanderplaats Research & Development Inc., Colorado Springs, USA (2001).
  13. MagNet User's Manual, Infolytica Corporation, Quebec, Canada (2008).