• Title/Summary/Keyword: Ship hull

Search Result 1,253, Processing Time 0.026 seconds

Development of Compressive Ultimate Strength Formulations for Ship Plating Stiffener with Cutout (선체 유공보강판의 압축최종강도에 관한 설계식 개발)

  • Ko Jae-Yong;Park Joo-Shin;Oh Dong-Kee
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.121-125
    • /
    • 2004
  • Recently, High Tensile Steel is adapt to thin plate on the steel structure and marine structure is used widely, It is possible for buckling happens great. Specially, Initial deflection of ship structure happens in place absence necessarily by heat processing of welding or cutting etc. This Initial Deflection is exerted negative impact when thin plate absence complicated nonlinear behaviour accompanied secondary budding. As a result, must idealize initial deflection that occurrence is possible to endow stability and accuracy in the hull structure or marine structure and reflect in early structure design considering secondary buckling. Longi direction of compressive load interacts and analyzed finite element series analysis that apply various kinds initial deflection shape measured actually on occasion that is arranged simply supported condition in this research. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

A Study on the Compressive Ultimate Strength of Ship Plating with Complicated Shape of the Initial Deflection (복잡한 형상의 초기처짐을 가진 선체판의 압축최종강도에 관한 연구)

  • 고재용;박주신;이계희;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.83-88
    • /
    • 2004
  • Recently, High Tensile Steel is adapt to thin plate on the steel structure and marine structure is used widely. It is possible for buckling happens great. Specially, Initial deflection of ship structure happens in place absence necessarily by heat processing of welding or cutting etc. This Initial Deflection is exerted negative impact when thin plate absence complicated nonlinear behaviour accompanied secondary buckling. As a result, must idealize initial deflection that occurrence is possible to endow stability and accuracy in the hull structure or marine structure and reflect in early structure design considering secondary buckling. Longi direction of compressive load interacts and analyzed finite element series analysis that apply various kinds initial deflection shape measured actually on occasion that is arranged simply supported condition in this research. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

Ship's Maneuverability & Required Number of Tug Boat in Strong Winds for the T.S. HANBADA (실습선 한바다호의 강풍시 항내 어프로칭 조선 및 예인선 사용 기준에 관한 연구)

  • Jung, Chang-Hyun;Kong, Gil-Young;Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.597-602
    • /
    • 2008
  • T.S. HANBADA has a relatively large hull and superstructures above the water line, so she has much of leeway or turning of bow with the effect of winds. Especially on berthing, unberthing and/or sailing on low speed, these effects take place more significant. Therefore, it was carried out the numerical calculation of the wind force and moments acting on the T.S. HANBADA, and then calculated the leeway angle and counter rudder angle with the relative wind direction and velocity. Also, it was suggested the maximum wind velocity which could be berthed or unberthed used by bow thruster and the tugboat operations in strong winds. These results will be great helpful to the vessels with large superstructures on ship's handling in harbour or tugboat operations.

Full Scale Measurement Data Analysis of Large Container Carrier with Hydroelastic Response, Part II - Fatigue Damage Estimation (대형 컨테이너 선박의 유탄성 실선 계측 데이터 분석 Part II - 피로 손상도 추정)

  • Kim, Byounghoon;Choi, Byungki;Park, Junseok;Park, Sunggun;Ki, Hyeokgeun;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • Concerns are emerging in marine industry on the additional fatigue damages induced by hydroelasticity, and large container carriers, among others, are considered to be susceptible to this hydroelastic response due to its large size, deck openings and high speed. This study focuses on the fatigue damage estimation of 9,400TEU container carrier based on the full scale measurement data via long-base strain gage installed on the ship. Some correlation analyses have been also done to check whether there was significant torsional response during the voyage. Direct cycle counting method was used to derive stress histogram and the long-term fatigue damage was estimated based upon that analyzed data. It turned out that the fatigue damage of this particular ship during the measurement period increased by more than 60% due to the hydroelastic response of the hull, and main contribution is considered to come from vertical bending mode.

The development of small water-jet propulsion for 150HP grade inboard type (150마력급 선내형 소형 워터제트 추진시스템 개발)

  • Lee, Joong-Seop;Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.246-252
    • /
    • 2014
  • This study is on the development of 150PS inboard type of compact water jet propulsion system. The water jet is composed of intake, impeller, diffuser, reverse bucket and main shaft. Components of water jet have been manufactured through precision processing after sand casting. Development of water jet propelled engine has been finally completed by processes which are design, production and inspection on each component. The water jet performance characteristics show that 0.29 m3/s of maximum flow rate and 37 m/s of flow velocity have been secured in the ground test pool. Field test was performed by 21ft test ship that water jet propulsion equipment developed in this study was installed. As a result, the weight of hull, engine and other parts of the ship has been almost 1.2 ton and 45 km/h of maximum sailing speed has been recorded with 3700 rpm of engine in the domestic coast test.

A Numerical Study on Resistance Performance According to the Draft CFRP Composite Canoe (탄소섬유를 적용한 카누의 흘수에 따른 저항성능에 대한 수치적 연구)

  • Kim, Ju Yeol;Kim, Junho;Joung, Jae Ha;Lim, Jongkil;Ra, Inkang;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.876-883
    • /
    • 2016
  • In this study, we selected CFRP to construct a canoe hull. A ship design was made using a commercial ship design program, SOLIDWORKS, and a flow analysis of the canoe on a free surface was calculated using STAR-CCM+. A flow field and waveform were obtained in this way. These results were used to check the resistant performance of the canoe. Results showed that if the draft is 0.09 m, it is safe to run at less than 4 m/s, and if draft is 0.24 m, it is safe to run at less than 2 m/s. Moreover, it was confirmed that those speeds can be made by two adults. The developed canoe, which is 20 % lighter in comparison with conventional FRP models, was briefly introduced in this paper.

Reliability Assessment against Ultimate Bending Moment of Ships′ Hull Girder (선체의 최종굽힘 모멘트에 대한 신뢰성 검토)

  • Joo-Sung Lee;P.D.C. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.103-112
    • /
    • 1992
  • The ultimate bending moment of ships is one of the principle strength considered in ship design. Several methods have been proposed to predict the ultimate bending moment and its major part is, in general, predicting the ultimate compressive strength of stiffened panels. In this paper, made is the review on the methods and formulae of predicting the ultimate compressive strength and they are applied to predicting the ultimate bending moment. Safely levels of three bulk carriers have been derived evaluated for two loading conditions, stray, light ship condition and full load condition, and wave bending by Classification Society Rule(ABS, DnV and Lloyd Rule). The present reliability analysis problem is strictly non-linear and the Advanced First-Order Reliability Method has been used. From the results of parametric studies, the methods of predicting the ultimate compressive strength of stiffened panels are compared from the view point of their applicability to the reliability assessment of ships structures. The paper ends wish a brief discussion drawn from the parametric studies and the extension of the study is described.

  • PDF

Development of an Arctic Tanker Design (극지용 쇄빙 유조선 개발)

  • Kim, Hyun-Soo;Ha, Mun-Keun;Ahn, Dang;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.20-29
    • /
    • 2003
  • When Arctic offshore development in the 1970's first led to the consideration of ice capable tankers, there was a high level of uncertainty over design requirements for both safety and ship performance. Also here was a lack of reliable methods to evaluate design proposals. Since that time, improved understanding of the ice environment has raised the confidence of design specifications. Parallel developments have resulted in a suite of engineering tools for ship performance evaluation at the design stage Recent development of offshore and near shore oil and gas reserves in several countries together with economic studies of increased transportation through the Russian Arctic has newly introduced the interest in ice capable tanker design. in response, Samsung Heavy Industries (SHI) applied its experience in tanker design and construction to the design of a specialized tanker with ice capability. SHI produced two prototype hull designs for further study. The performance of both hulls and of the propellers was evaluated at the Institute for Marine Dynamics (IMD) in St. John's, Newfoundland This paper discusses the development of the design, describes the model experiments to determine performance and variations, and presents the results.

Analysis of Energy Efficiency Design Index and Onboard Power Capacity for New Building Ships (신조선의 에너지효율설계지수와 선상 동력용량에 대한 분석)

  • Lee, D.C.;Millar Jr, Melchor M.;Nam, J.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.843-851
    • /
    • 2009
  • Much work has already been done to control and regulate the worldwide problems caused by climate change, particularly the issues on greenhouse gas (GHG) emissions. Carbon dioxide ($CO_2$), having the highest form of concentration among GHGs composed around 1.0 billion tons of emission, and comprises about 98% of the total emissions from the shipping industry. Korean trade mainly rely on the sea transportation. Korean ship tonnages that was brought about by shipbuilders all over the country, continues to grow annually due to the prevailing demands on goods or material supplies and depicting only a small part of the global maritime activity. Nowadays, new build ships coming from the Korean Shipbuilders are being optimized by hull, structure and appendages design, The operational capability of the propulsion and auxiliary machineries in its maximum capacity to achieve the highest possible efficiencies for energy and onboard power use to mitigate $CO_2$ emissions are continually being done through the help of research and development. In this paper, the energy efficiency design index and anboard power capacity of Korean new build ships have been analyzed with response to data collected by ship types, and its respective fuel consumption in relation to $CO_2$ emission results. In response to climate change convention outcome proposals, the best way for the new build ships to become energy efficient is by lowering its operational speed thru adopting the state of the art diesel propulsion engines, patronizing the best sailing practice to lower the transportation cost on the different sea trade routes also helps in $CO_2$ mitigation.

A Study on the Anchoring Safety Assessment of E-Group Anchorage in Ulsan Port (울산항 E 집단정박지 묘박안전성 평가에 관한 연구)

  • Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2014
  • This study suggests the minimum critical external forces based on the assessment of anchoring safety to single anchor situation for representative 8 number of ships in E-group anchorage of Ulsan port. Assessment of anchoring safety is compared holding powers of anchor with external forces of wind, wave and current. Holding powers was reflected materials of seabed, equipment numbers regarding anchor and chain weight, also external forces acting on a hull was calculated considering projected wind area and wetted surface area to the full and ballast conditions respectively. The results of anchoring safety assessments to single anchor showed that the minimum criteria of dragging anchor is a little different from ship's type, size and loading conditions. Bulk carrier can be dragged over the 15m/s of winds and Tanker can be dragged over the 13m/s of winds in case of less than 2knots of currents speed.