• Title/Summary/Keyword: Ship control

Search Result 1,287, Processing Time 0.037 seconds

Study on Project Management Method of Naval Ship Building in Monetary Fluctuations (금융환경 변동 하에서 실적가치 기법에 의한 함정건조사업 관리 방안 연구)

  • Kim, Hyung-Man;Seo, Guan-Hee;Kim, Soo-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.542-549
    • /
    • 2005
  • Naval ships are complex weapon systems which play the integrated performance by system integration of many kinds of weapon systems and their leading ships are usually not disposed after test and evaluation but militarised. Then, strict project management is required for naval ship building projects by identifying problems early and by taking prefer measures in time against unexpected situations encountered in the process of the projects. EVMS is a project management system which can manage the schedule and the budget of a project concurrently and estimate the project's time duration and the cost at project completion. In this paper, the applicability and usefulness of WMS is studied for a assumed navai ship building project, in the environment of monetary fluctuations such as price index, wage increase rate and exchange rate.

Estimating Hydrodynamic Coefficients of Real Ships Using AIS Data and Support Vector Regression

  • Hoang Thien Vu;Jongyeol Park;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.198-204
    • /
    • 2023
  • In response to the complexity and time demands of conventional methods for estimating the hydrodynamic coefficients, this study aims to revolutionize ship maneuvering analysis by utilizing automatic identification system (AIS) data and the Support Vector Regression (SVR) algorithm. The AIS data were collected and processed to remove outliers and impute missing values. The rate of turn (ROT), speed over ground (SOG), course over ground (COG) and heading (HDG) in AIS data were used to calculate the rudder angle and ship velocity components, which were then used as training data for a regression model. The accuracy and efficiency of the algorithm were validated by comparing SVR-based estimated hydrodynamic coefficients and the original hydrodynamic coefficients of the Mariner class vessel. The validated SVR algorithm was then applied to estimate the hydrodynamic coefficients for real ships using AIS data. The turning circle test wassimulated from calculated hydrodynamic coefficients and compared with the AIS data. The research results demonstrate the effectiveness of the SVR model in accurately estimating the hydrodynamic coefficients from the AIS data. In conclusion, this study proposes the viability of employing SVR model and AIS data for accurately estimating the hydrodynamic coefficients. It offers a practical approach to ship maneuvering prediction and control in the maritime industry.

Performance Analysis of Ship IPMS Simulator Based on DDS integrated with Different Operating System Equipment (이종 운영체제 장비를 통합한 DDS 기반 선박 IPMS 시뮬레이터 성능 분석)

  • Seongwon Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.210-215
    • /
    • 2024
  • With increasing automation in ships and the development of autonomous ships, an IPMS (Integrated Platform Management System) in ship needs to integrate and process large amounts of real-time data from various equipment operating on different operating systems. A ship IPMS simulator based on data distribution service (DDS) was developed and its performance was evaluated to handle data processing similar in real ship environment. Errors were monitored while 1,000 topics/sec were asynchronously published and subscribed from data acquisitive units (DAUs) and an IPMS server operating on different operating systems. Except for the loss of some topics during the initial 4 seconds, topics were received without an error thereafter. The developed simulator demonstrates the feasibility of using DDS to integrate various control systems using different operating systems in actual ships.

A Study on Control System Design for Ship Mooring Winch System (무어링 윈치 제어시스템 설계에 관한 연구)

  • Kang, Chang-Nam;Jeong, Ji-Hyun;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.89-98
    • /
    • 2013
  • In this paper, the authors consider control system design problem of barge type surface vessel. It is based on the Dynamic Positioning System(DPS) design problem. The main role of barge ship is to carry and supply the materials to the floating units and other places. To carry out this job, it should be positioned in the specified area. Even though sometimes the thrust systems are installed on it, in general the mooring winch system with the rope is used. It may be difficult to compare the control performances of two types. But, if we consider this problem in point of usefulness, we can easily find out that the winch control system is more useful and applicable to the real field than the thrust control system except a special use. Therefore, in this paper we consider a single type mooring winch system and control system design problem in which accurate position control is needed. Because this result can be extended to the general type mooring system in which a number of winch are installed. At first, a mathematical model of winch is obtained and evaluated to verify the usefulness for control system design by experiment. Also, the disturbance model is extracted from experiment data to evaluate the strength of the uncertainty. Based on this results, the robust control system is designed and control performance is evaluated by simulation.

A Study on the Changes in Functions of Ship Officer and Manpower Training by the Introduction of Maritime Autonomous Surface Ships (자율운항선박 도입에 따른 해기사 직능 변화와 인력양성에 관한연구)

  • Lim, Sung-Ju;Shin, Yong-John
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • This study aims to investigate changes in the demand for ship officers in response to changes in the shipping industry environment in which Maritime Autonomous Surface Ships (MASS) emerge according to the application of the fourth industrial revolution technology to ships, and it looks into changes in the skill of ship officer. It also analyzes and proposes a plan for nurturing ship officers accordingly. As a result of the degree of recognition and AHP analysis, this study suggests that a new training system is required because the current training and education system may cover the job competencies of emergency response, caution and danger navigation, general sailing, cargo handling, seaworthiness maintenance, emergency response, and ship maintenance and management, but tasks such as remote control, monitoring diagnosis, device management capability, and big data analysis require competency for unmanned and shore-based control. By evaluating the importance of change factors in the duties of ship officers in Maritime Autonomous Surface Ships, this study provides information on ship officer educational institutions' response strategies for nurturing ship officers and prioritization of resource allocation, etc. The importance of these factors was compared and evaluated to suggest changes in the duties of ship officers and methods of nurturing ship officers according to the introduction of Maritime Autonomous Surface Ships. It is expected that the findings of this study will be meaningful as it systematically derives the duties and competency factors of ship officers of Maritime Autonomous Surface Ships from a practical point of view and analyzed the perception level of each relevant expert to diagnose expert-level responses to the introduction of Maritime Autonomous Surface Ships.

Study on Improving the Navigational Safety Evaluation Methodology based on Autonomous Operation Technology (자율운항기술 기반의 선박 통항 안전성 평가 방법론 개선 연구)

  • Jun-Mo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.74-81
    • /
    • 2024
  • In the near future, autonomous ships, ships controlled by shore remote control centers, and ships operated by navigators will coexist and operate the sea together. In the advent of this situation, a method is required to evaluate the safety of the maritime traffic environment. Therefore, in this study, a plan to evaluate the safety of navigation through ship control simulation was proposed in a maritime environment, where ships directly controlled by navigators and autonomous ships coexisted, using autonomous operation technology. Own ship was designed to have autonomous operational functions by learning the MMG model based on the six-DOF motion with the PPO algorithm, an in-depth reinforcement learning technique. The target ship constructed maritime traffic modeling data based on the maritime traffic data of the sea area to be evaluated and designed autonomous operational functions to be implemented in a simulation space. A numerical model was established by collecting date on tide, wave, current, and wind from the maritime meteorological database. A maritime meteorology model was created based on this and designed to reproduce maritime meteorology on the simulator. Finally, the safety evaluation proposed a system that enabled the risk of collision through vessel traffic flow simulation in ship control simulation while maintaining the existing evaluation method.

Modeling and Anti-sway Control of a Container Crane (컨테이너 크레인의 모델링 및 흔들림 억제 방법)

  • Lim, Chang-Jin;Kim, Heung-Geun;Choi, Jong-woo
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.196-198
    • /
    • 2004
  • In this paper, the container crane which transports containers between a container ship and trucks in the harbor is modeled. The equation of motion is simplified for control purpose. The pole placement technique is used to control the crane to minimize load swing angle The objective of the control is to transfer the load as quickly as possible, while minimizing the amplitude of swing at the end of transfer. Computer simulations are provided.

  • PDF