• 제목/요약/키워드: Ship Scheduling Problem

검색결과 49건 처리시간 0.031초

평균-분산 최적화 모형을 이용한 로버스트 선박운항 일정계획 (A Robust Ship Scheduling Based on Mean-Variance Optimization Model)

  • 박나래;김시화
    • 한국경영과학회지
    • /
    • 제41권2호
    • /
    • pp.129-139
    • /
    • 2016
  • This paper presented a robust ship scheduling model using the quadratic programming problem. Given a set of available carriers under control and a set of cargoes to be transported from origin to destination, a robust ship scheduling that can minimize the mean-variance objective function with the required level of profit can be modeled. Computational experiments concerning relevant maritime transportation problems are performed on randomly generated configurations of tanker scheduling in bulk trade. In the first stage, the optimal transportation problem to achieve maximum revenue is solved through the traditional set-packing model that includes all feasible schedules for each carrier. In the second stage, the robust ship scheduling problem is formulated as mentioned in the quadratic programming. Single index model is used to efficiently calculate the variance-covariance matrix of objective function. Significant results are reported to validate that the proposed model can be utilized in the decision problem of ship scheduling after considering robustness and the required level of profit.

전술적 선박 스케쥴링의 최적화 분석에 관한 연구 (A Study on the Optimization Analysis of Tactical Ship Scheduling)

  • 이경근;김시화
    • 한국항해학회지
    • /
    • 제18권2호
    • /
    • pp.57-67
    • /
    • 1994
  • This paper treats the optimization analysis of tactical ship scheduling problems in the world seaborne bulk trade. The authors use the term 'tactial' to describe the ship scheduling problem where the owners should employ skillful tactics as an expedient toward gaining the higher profits per period in short term. Relevent research and related problems on ship scheduling problems are reviewed briefly and a model for the tactical ship scheduling problem formulated as Set Problem is introduced by modifying the previous work of Fisher(1989). The reality and practicability of the model is validated by some ship-ping statistics. Proper solution approaches are outlined in the context of computational tractability in tackling the Mixed Integer Propramming. Some underlying consideration for the computational experiment is also mentioned. The authors conclude the paper with the remarks on the need of user-friendly Decision Support System for ship scheduling under varying decision environment.

  • PDF

유조선의 최적 운항일정계획 (An optimization of crude oil tanker scheduling problems)

  • 주재훈;김기석
    • 경영과학
    • /
    • 제8권1호
    • /
    • pp.91-108
    • /
    • 1991
  • This paper presents an efficient optimization algorithm for the crude oil tanker scheduling problem. The algorithm consists of two stages. In stage one, all the potentially optimal schedules (called 'candidate schedules') are generated from feasible schedules for each ship. In the second stage, a multiple ship scheduling problem is formulated as 0-1 integer programming problem considering only the those candidate schedules. The efficiency of the suggested algorithm was improved by exploiting the special structure of the formulation. The algorithm was illustrated by a numerical example and tested on practical ship scheduling problems.

  • PDF

배선 및 선박운항일정계획에 관한 연구 -유조선의 운항일정계획을 중심으로- (A Study on Cargo Ships Routing and Scheduling Emphasis on Crude Oil Tanker Scheduling Problems)

  • 허일
    • 한국항해학회지
    • /
    • 제14권1호
    • /
    • pp.21-38
    • /
    • 1990
  • This paper discusses the various modes of operations of cargo ships which are liner operations, tramp shipping and industrial operations, and mathematical programming, simulation , and heuristic method that can be used to solve ships routing and scheduling problems for each of these operations. In particular, this paper put emphasis on a crude oil tanker scheduling problem. The problem is to achieve an optimal sequence of cargoes or an optimal schedule for each ship in a given fleet during a given period. Each cargo is characterized by its type, size, loading and discharging ports, loading and discharging dates, cost, and revenue. Our approach is to enumerate all feasible candidate schedate schedules for each ship, where a candidate schedule specifies a set of cargoes that can be feasibly carried by a ship within the planning horizon , together with loading and discharging dates for each cargo in the set. Provided that candidate schedules have been generated for each ship, the problem of choosing from these an optimal schedule for each ship is formulated as a set partitioning problem, a set packing problem, and a integer generalized network problem respectively. We write the PASCAL programs for schedule generator and apply our approach to the crude oil tanker scheduling problem similar to a realistic system.

  • PDF

A Mixed Integer Programming Model for Bulk Cargo Ship Scheduling with a Single Loading Port

  • Seong-Cheol Cho
    • 한국항해학회지
    • /
    • 제22권4호
    • /
    • pp.15-19
    • /
    • 1998
  • This paper concerns a bulk or semibulk cargo ship scheduling problem with a single loading port. This type of ship scheduling problem is frequently needed in real world for carrying minerals or agricultural produce from a major single production zone to many destinations scattered over a large area of the world. The first optimization model for this problem was introduced by Ronen (1986) as a nonlinear mixed integer program. The model developed in this paper is an improvement of his model in the sense that nonlinearities and numerous unnecessary integer variables have been eliminated. By this improvement we could expect real world instances of moderate sizes to be solved optimal solutions by commercial integer programming software. Similarity between the ship scheduling model and the capacitated facility location model is also discussed.

  • PDF

휴리스틱을 이용한 초계함급 함정의 정박당직근무 일정계획 (An Watch Duty Scheduling by using Heuristic focused on Korea Navy Ship)

  • 장영천;전건욱
    • 한국국방경영분석학회지
    • /
    • 제31권2호
    • /
    • pp.60-74
    • /
    • 2005
  • The main purpose of this study is to develop an watch duty scheduling focused on Korea Navy Ship, PCC class, in port. The watch duty scheduling is a type of a scheduling problem which both considers the readiness of the ship and fair duty for each person. In this study, we analyzed the personal ability and military occupational speciality and developed a manpower scheduling by using heuristic. We find an efficient and effective watch duty schedule which improved results.

공간제약을 갖는 선박용 엔진 조립공장의 효율적인 일정계획을 위한 발견적 기법 (A Heuristic for Efficient Scheduling of Ship Engine Assembly Shop with Space Limit)

  • 이동현;이경근;김재균;박창권;장길상
    • 산업공학
    • /
    • 제12권4호
    • /
    • pp.617-624
    • /
    • 1999
  • In order to maximize an availability of machine and utilization of space, the parallel machines scheduling problem with space limit is frequently discussed in the industrial field. In this paper, we consider a scheduling problem for assembly machine in ship engine assembly shop. This paper considers the parallel machine scheduling problem in which n jobs having different release times, due dates and space limits are to be scheduled on m parallel machines. The objective function is to minimize the sum of earliness and tardiness. To solve this problem, a heuristic is developed. The proposed heuristic is divided into three modules hierarchically: job selection, machine selection and job sequencing, solution improvement. To illustrate its effectiveness, a proposed heuristic is evaluated with a large number of randomly generated test problems based on the field situation. Through the computational experiment, we determine the job selection rule that is suitable to the problem situation considered in this paper and show the effectiveness of our heuristic.

  • PDF

선박운항일정계획 문제의 유전해법 (A Genetic Algorithm for the Ship Scheduling Problem)

  • 이희용;김시화
    • 한국항해학회지
    • /
    • 제24권5호
    • /
    • pp.361-371
    • /
    • 2000
  • This paper treats a genetic algorithm for ship scheduling problem in set packing formulation. We newly devised a partition based representation of solution and compose initial population using a domain knowledge of problem which results in saving calculation cost. We established replacement strategy which makes each individual not to degenerate during evolutionary process and applied adaptive mutate operator to improve feasibility of individual. If offspring is feasible then an improve operator is applied to increase objective value without loss of feasibility. A computational experiment was carried out with real data and showed a useful result for a large size real world problem.

  • PDF

A study on the column subtraction method applied to ship scheduling problem

  • Hwang, Hee-Su;Lee, Hee-Yong;Kim, Si-Hwa
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 춘계학술대회 논문집
    • /
    • pp.401-405
    • /
    • 2004
  • Column subtraction, originally proposed by Harche and Thompson(]994), is an exact method for solving large set covering, packing and partitioning problems. Since the constraint set of ship scheduling problem(SSP) have a special structure, most instances of SSP can be solved by LP relaxation. This paper aims at applying the column subtraction method to solve SSP which can not be solved by LP relaxation. For remained instances of unsolvable ones, we subtract columns from the finale simplex table to get another integer solution in an iterative manner. Computational results having up to 10,000 0-1 variables show better performance of the column subtraction method solving the remained instances of SSP than complex branch-and-bound algorithm by LINDO.

  • PDF

A study on the column subtraction method applied to ship scheduling problem

  • Hwang, Hee-Su;Lee, Hee-Yong;Kim, Si-Hwa
    • 한국항해항만학회지
    • /
    • 제28권2호
    • /
    • pp.129-133
    • /
    • 2004
  • Column subtraction, originally proposed by Harche and Thompson(1994), is an exact method for solving large set covering, packing and partitioning problems. Since the constraint set of ship scheduling problem(SSP) have a special structure, most instances of SSP can be solved by LP relaxation This paper aim, at applying the column subtraction method to solve SSP which am not be solved by LP relaxation For remained instances of unsolvable ones, we subtract columns from the finale simplex table to get another integer solution in an iterative manner. Computational results having up to 10,000 0-1 variables show better performance of the column subtraction method solving the remained instances of SSP than complex branch and-bound algorithm by LINDO.