• 제목/요약/키워드: Ship Plate

Search Result 448, Processing Time 0.023 seconds

A Study on the Large Deflection Behavior of Ship Plate with Secondary Buckling (2차좌굴을 포함하는 선체판의 대변형거동에 관한 연구)

  • 고재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.565-573
    • /
    • 1999
  • Hihg Tensile Steel enables to reduce the plate thickness comparing to the case when Mild Steel is used. From the economical view points this is very preferable since the reduction in the hull weight. however to use the High Tensile Steel effectively the plate thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling the flexural rigidity of the cross sect6ion of a ship's hull also decreases. This may lead to excessive deflection of the hull girder under longitudinal bending. In these cases a precise estimation of plate's behavior after buckling is necessary and nonliner analysis of isolated and stiffened plates is required for structural sys-tem analysis. In this connection this paper discusses nonlinear behaviour of thin plate under thrust. Based on the analytical method elastic large deflection analysis of isolated plate is perform and simple expression are derived to evaluated the inplane rigidity of plates subjected to uniaxial compression.

  • PDF

Hydrodynamic Forces Acting on the Submerged-Plate

  • Lee Sang Min;Kong Gil Young;Kim Chol-Seong;Lee Yun Sok
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.149-153
    • /
    • 2003
  • The hydrodynamic forces acting on the submerged plate are composed of diffraction and radiation forces. Thus we have carried out the extensive experiments and numerical simulations to make clear the characteristics of the diffraction and radiation forces on the submerged plate. These experimental results are compared with the numerical ones, and we discuss the effect of nonlinear on the hydrodynamic forces acting on the submerged plate. As a result, we get the conclusion that the submerged plate is useful for reducing the wave exciting forces on the structure behind the submerged plate.

  • PDF

A Study on the Structure Strength of Wing In Ground effect Ship (표면 효과익선(WIG)의 구조 강도에 관한 연구)

  • 고재용;박석주;정성호;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.95-100
    • /
    • 2002
  • The wing in ground effect (WIG) ship is an energy saying vessel that uses the lift from its air-wing along with the lift increase from the ground effect by flying low above the sea surface. The WIG Ship should consist of thin plate in order to float on the sea and to fly in the air. Therefore, the structure of WIG, Ship has very thin and light shell plate and stiffener like stringer and frame has comparatively large cross section area. This structure makes shell plate nearly pure shear field when shell plate is pressed by in-plane load. This complex thin plate structure of WIG Ship can he considered as a closed section beam which makes it possible to analyze structure response of WIG Ship affected by shear load and bending load. In this respect, the present study will show basic theory for analysing shear stress and focus on the analysis of structure strength of model WIC Ship's wing.

  • PDF

A Study on the Secondary Buckling Behavior of Ship Plate (선체판부재의 2차좌굴거동에 관한 연구)

  • 고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 1996
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The main portion of ship structure is usually composed of stiffened plates. In these structures, plate buckling is one of the most important design criteria and buckling load may usually be obtained as an eigenvalue solution of the governing equations for the plate. To use the high tensile steel plate effectively, its thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. When the panel elastic buckling is allowed, it is necessary to get precise understandings about the post-buckling behaviour of thin plates. It is well known that a thin flat plate undergoes secondary buckling after initial buckling took place and the deflection of the initial buckling mode was developed. From this point of view, this paper discusses the post-buckling behaviour of thin plates under thrust including the secondary buckling phenomenon. Series of elastic large deflection analyses were performed on rectangular plates with aspect ratio 3.6 using the analytical method and the FEM.

  • PDF

A Study on the Ultimate Strength Behaviour According to the Boundary Condition of a Plate under Thrust (면내하중을 받는 판의 경계조건에 따른 최종강도거동에 관한 연구)

  • 고재용;박주신;최익창;이계희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.557-564
    • /
    • 2002
  • One of the primary factors like plate structure In ship is redundancy structure that is comparable with ocean structure and frame structure. The more component material becomes buckling collapsed locally the less structure stiffness becomes accordingly. As a result, by increasing the load distribution of any other subsidiary structure continually component member collapses, therefore the structure could be in danger of collapse. So, in order to interpret this phenomenon precisely, the study on boundary condition of the ship's Plate and post-buckling analysis must be considered. In this study, the rectangular plate is compressed by the in-plane load. Buckling & Ultimate strength characteristics we applied to be the elasto-plasticity large deformation by F.E.M. On this basis, elasto-plasticity of the plain plate are investigated. This study proved elasto-plasticity behaviour of tile ship's plate In accordance with boundary condition based on the series analysis In case of the compressive load operation.

  • PDF

Improvement of Sound Transmission Loss of Ship's Bulkhead at Low Frequency Range (선박 격벽의 저주파수 대역 차음성능 향상에 관한 연구)

  • Kim, Sung-Hoon;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.167-168
    • /
    • 2009
  • The noise sources in ship and offshore structure have an influence on adjacent receiving area through a partition between noise sources and receiving area. The partition in ship is usually made of stiffened plate. Sound transmission loss (STL) of the partition at high frequency could be improved by additional installation of insulation or wall panel. At low frequency, however, it is very difficult and needs an increase of plate thickness which causes a considerable weight increase of ship. In this paper, we have investigated the effect of the bulkhead boundary condition. From measurement result, we found that the bulkhead boundary condition can affect a lot in STL, especially at low frequency range. Finally, we get the 5dB increase in STL through the modification of boundary condition.

  • PDF

Development of Slender Doubler Plate Hybrid Design System for Ship Structure Subjected to Longitudinal In-plane Compression (종방향 면내 압축하중 하의 세장한 선박 이중판 하이브리드 설계시스템 구축)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • In view of the importance of material reduction and rational structural design due to the rapid increase in oil and steel prices, an optimized structural hybrid design system for the doubler plate of a ship's hull structure was developed. A direct design process by a structural designer was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. As the first step of the doubler design system development, the design formulas used in doubler design system were introduced. Based on the introduction of influence coefficients $K_{t_c}$ $K_{t_d}$, $K_{b_d}$ and $K_{a_d}$ according to the variations in the doubler length, breadth, doubler thickness, and average corrosion thickness of the main plate, the design formulas for an equivalent plate thickness were developed, and a hybrid design system using these formulas was suggested for the slender doubler plate of a ship structure subjected to a longitudinal in-plane compression load. By using this developed design system, a more rational doubler plate design can be expected considering the efficient reinforcement of the plate members of ship structures. Additionally, a more detailed structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for the doubler plate.

Hydroelastic Effects in Vibration of Plate and Ship Hull Structures Contacted with Fluid

  • Lee, Jong-Soo;Song, Chang-Yong
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.76-88
    • /
    • 2011
  • The present study deals with the hydroelastic vibration analysis of structures in contact with fluid via coupled fluid-structure interaction (FSI) embedded with a finite element method (FEM) such that a structure displacement formulation is coupled with a fluid pressure-displacement formulation. For the preliminary study and validation of FEM based coupled FSI analysis, hydroelastic vibration characteristics of a rectangular plate in contact with fluid are first compared with the elastic vibration in terms of boundary condition and mode frequency. Numerical results from coupled FSI analysis have been shown to be rational and accurate, compared to energy method based theoretical solutions and experimental results. The effect of free surface on the vibration mode is numerically studied by changing the submerged depth of a rectangular plate. As a practical application, the hull structural vibration of 4,000 twenty-foot equivalent units (TEU) container ship is considered. Hydroelastic results of the ship hull structure are compared with those obtained from the elastic condition.

Development of Automated Edge Milling System for Ship Stiffener Plate (선박 보강부재 모서리 자동가공 시스템 개발)

  • Taek-Young Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.679-686
    • /
    • 2023
  • According to the PSPC (Performance Standard for Protective coatings) rule, the edge preparation must keep 2R or 3-pass grinding. The stiffener plate edge grinding of the ship inside is manually progressed by worker and worked with just one pass grinding. In addition, the poor working condition cause grinding workers to avoid working in them, and the quality is determined by the skill-level of a worker. This research developed optimal tool for edge milling. In order to milling various collar plates edge, this research developed vision system that can recognize the edge points and it developed a program that operator can adjust the amount of cutting and speed, and add various features so that milling quality would be improved. So, this research focused on overcoming the difficulties in working condition and development of automated milling machine for ship stiffener plate.

Development of Distortion Analysis Method for Multi-pass Butt-welding Based on Shell Element (다층 맞대기용접의 쉘 요소 기반 변형해석법 개발)

  • Ha, Yun-Sok;Yang, Jin-Hyuk
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.54-59
    • /
    • 2010
  • Ship Blocks are assembled by welding, and among them, welding between large blocks (Pre-erection stage) is used as feature of butt. In this process, local material has a experience of thermal cycle and become finally shrunk. As for inconsistency of shrunk weldments and adjacent regions, ship structure would be deformed locally and globally. Thermal distortion analyses are done for control of these processes, and methodologies capable of ship block size among them are using 2-D shell element in FEM. A shell element takes charge of plate, so it has its thickness which is important for angular distortion by welding. By the way, a butt-welding consists normally of several passes, and weldment thickness are different at each pass. If a calculated final one-time welding shrinkage is acting on the shell element whose thickness is same as it of plate, then deformation value must be underestimated. This research developed a methodology that total deformation after multi-pass welding can be analyzed by one time at shell element having original thickness of its plate. We use the SDB thermal distortion analysis method and verified by several experiment. The both experimental and analysis results showed good agreements.