• Title/Summary/Keyword: Ship Berthing

Search Result 127, Processing Time 0.019 seconds

Automatic Berthing Control of Ship Using Adaptive Neural Networks

  • Nguyen, Phung-Hung;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.563-568
    • /
    • 2007
  • In this paper, an adaptive neural network controller and its application to automatic berthing control of ship is presented. The neural network controller is trained online using adaptive interaction technique without any teaching data and off-line training phase. Firstly, the neural networks used to control rudder and propeller during automatic berthing process are presented. Secondly, computer simulations of automatic ship berthing are carried out in Pusan bay to verify the proposed controller under the influence of wind disturbance and measurement noise. The results of simulation show good performance of the developed berthing control system.

A Study on the Evaluation of Berthing Energy of Large-Sized Container Ships with the effect of Shallow Waters (대형 컨테이너선의 천수역 영향을 고려한 접안에너지 산출에 관한 연구)

  • Kim Chol-Seong;Lee Yun-Sok;Lee Chung-Ro;Cho Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.673-678
    • /
    • 2005
  • In order to improve the safety of ship berthing and the efficiency of berth operation in the harbour, the berthing energy acting on a ship in berthing maneuver need to be estimated properly. The berthing energy is used as one of the criteria to determine the maximum permissible load q{ fender as well as important factors to establish the berthing speed and the required power of tug-boat for pilot and ship operator. Some problems of berthing energy are discussed on the basis of the hydrodynamic aspects. Then, series calculations of berthing energy are carried out considering the effect of water depth on added mass and the ship shape for container series from 1,600TEU to 12,000TEU.

Real-time Detection Technique of the Target in a Berth for Automatic Ship Berthing (선박 자동접안을 위한 정박지 목표물의 실시간 검출법)

  • Choi, Yong-Woon;;Kim, Young-Bok;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.431-437
    • /
    • 2006
  • In this paper vector code correlation(VCC) method and an algorithm to promote the image-processing performance in building an effective measurement system using cameras are described far automatically berthing and controlling the ship equipped with side-thrusters. In order to realize automatic ship berthing, it is indispensable that the berthing assistant system on the ship should continuously trace a target in the berth to measure the distance to the target and the ship attitude, such that we can make the ship move to the specified location. The considered system is made up of 4 apparatuses compounded from a CCD camera, a camera direction controller, a popular PC with a built-in image processing board and a signal conversion unit connected to parallel port of the PC. The object of this paper is to reduce the image-processing time so that the berthing system is able to ensure the safety schedule against risks during approaching to the berth. It could be achieved by composing the vector code image to utilize the gradient of an approximated plane found with the brightness of pixels forming a certain region in an image and verifying the effectiveness on a commonly used PC. From experimental results, it is clear that the proposed method can be applied to the measurement system for automatic ship berthing and has the image-processing time of fourfold as compared with the typical template matching method.

A Study on Automatic Berthing Control of Ship Using Adaptive Neural Network Controller

  • Nguyen Phung-Hung;Jung Yun-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.67-74
    • /
    • 2006
  • In this paper, an adaptive neural network controller and its application to automatic berthing control of ship is presented. The neural network controller is trained online using adaptive interaction technique without any teaching data and off-line training phase. Firstly, the neural networks used to control rudder and propeller during automatic berthing process are presented. Finally, computer simulations of automatic ship berthing are carried out to verify the proposed controller with and without the influence of wind disturbance and measurement noise.

  • PDF

A Study on the Automatic Berthing Control of a Ship by Artificical Neural Network (인공신경망에 의한 선박의 자동접안에 관한 연구)

  • Lee, Seung-Keon;Lee, Gyoung-Woo;Lee, Seong-Jae;Jeong, Sung-Ryong
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.4
    • /
    • pp.21-28
    • /
    • 1997
  • Along with the rapid growth of shipping and transportation , the size of a ship larger and larger. Low speed maneuverabililty of a full ship has been received a great deal of attention concerting about the navigation safety, especially in the harbour area of waterway. And, the iperation of the full ship in harbour area is one fo tehmost difficult technique. Usually highly experienced experts can make a suitable decision considering various propeller ,rudder actions and environmental conditions. The Artificial Neural Network is applied to the automatic berthing control of a ship. The teaching data are made by the berthing simulation of a ship on the computer. And, the layer neural network is used and the 'Error Back-Propagation Algorithm' is used to teach the neural network. Finally, it is shown that the berthing control is successfully done by the established neural network.

  • PDF

A Study on the Modeling of Transitional Lateral Force Acting on the Berthing Ship by CFD

  • Kong, Gil-Young;Lee, Yun-Sok;Lee, Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1196-1202
    • /
    • 2004
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to estimate clearly the magnitudes and properties of hydrodynamic forces acting on ship hull in shallow water. A numerical simulation has been performed to investigate quantitatively the hydrodynamic force according to water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. By comparing the computational results with the experimental ones, the validity of the CFD method was verified. The numerical solutions successfully captured some features of transient flow around the berthing ship. The transitional lateral force in a state ranging from the rest to the uniform motion is modeled by using the concept of circulation.

Motion Identification using Neural Networks and Its Application to Automatic Ship Berthing under Wind

  • Im, Nam-Kyun;Kazuhiko Hasegawa
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.1
    • /
    • pp.16-26
    • /
    • 2002
  • In this paper, a motion identification method using neural networks is applied to automatic ship berthing to overcome disturbance effects. Motion identification is used to estimate the effect of environmental disturbance. Two rule-based algorithms have been developed to over-come disturbance. The first rule based-algorithm was designed to overcome lateral disturbance when a ship's lateral speed is affected by it. The second rule-based algorithm was also designed to overcome longitudinal disturbance when a ship's angular velocity is changed by it. Finally, numerical simulations for automatic berthing are carried out, and the suggested control system is proved to be more practical under disturbance circumstances.

Analysis of Berthing Velocity of Ship and Application to Safe Pilotage (선박접안속도 분석과 안전도선에의 활용)

  • Ik-Soon Cho;Eun-Ji Kang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.149-150
    • /
    • 2022
  • External forces acting on the mooring facilities include wave, wind, current, and ship's kinetic energy. In particular, the ship's kinetic energy is changing as the ship become larger, and larger carrying capacity. It was intended to analyze the berthing velocity measurement data at on tanker terminals equipped with a DAS (Docking Aid System) through statistical means and algorithms and use it as basic data for safer and more efficient pier design and pilotage.

  • PDF

A study on ship automatic berthing with assistance of auxiliary devices

  • Tran, Van Luong;Im, Nam-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.199-210
    • /
    • 2012
  • The recent researches on the automatic berthing control problems have used various kinds of tools as a control method such as expert system, fuzzy logic controllers and artificial neural network (ANN). Among them, ANN has proved to be one of the most effective and attractive options. In a marine context, the berthing maneuver is a complicated procedure in which both human experience and intensive control operations are involved. Nowadays, in most cases of berthing operation, auxiliary devices are used to make the schedule safer and faster but none of above researches has taken into account. In this study, ANN is applied to design the controllers for automatic ship berthing using assistant devices such as bow thruster and tug. Using back-propagation algorithm, we trained ANN with set of teaching data to get a minimal error between output values and desired values of four control outputs including rudder, propeller revolution, bow thruster and tug. Then, computer simulations of automatic berthing were carried out to verify the effectiveness of the system. The results of the simulations showed good performance for the proposed berthing control system.

Modeling and controller design of crabbing motion for auto-berthing (선박 자동접안을 위한 순수 횡 이동 모델링 및 제어기 설계)

  • Park, Jong-Yong;Kim, Nakwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.56-64
    • /
    • 2013
  • Crabbing motion is the pure sway motion of a ship without surge velocity. Thus, it can be applied to a berthing operation. Crabbing motion is induced by a peculiar operation method called the push-pull mode. The push-pull mode is induced by using a combination of the main propeller and side thruster. Two propellers generating the same amounts of thrust and rotating in opposite directions produce some yawing moment on a vessel but do not induce longitudinal motion. With the additional operation of side thrusters, the push-pull mode is used to induce a large amount of lateral force. In this paper, three-degree-of-freedom equations of motion such as for the surge, sway, and yaw are constructed for the crabbing motion. Based on these equations of motion, a feedback linearization control method is applied to auto-berthing control for a twin-screw ship with side thrusters. The controller can deal with the nonlinearity of a system, which is present in the berthing maneuver of a twin screw ship. A simulation of the auto-berthing of a ship is performed to validate the performance of the designed controller.