• Title/Summary/Keyword: Ship's motion

Search Result 287, Processing Time 0.024 seconds

Construction and verification of nonparameterized ship motion model based on deep neural network

  • Wang Zongkai;Im Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.170-171
    • /
    • 2022
  • A ship's maneuvering motion model is important in a computer simulation, especially under the trend of intelligent navigation. This model is usually constructed by the hydrodynamic parameters of the ship which are generated by the principles of hydrodynamics. Ship's motion model is a nonlinear function. By using this function, ships' motion elements can be calculated, then the ship's trajectory can be predicted. Deeping neural networks can construct any linear or non-linear equation theoretically if there have enough and sufficient training data. This study constructs some kinds of deep Networks and trains this network by real ship motion data, and chooses the best one of the networks, uses real data to train it, then uses it to predict the ship's trajectory, getting some conclusions and experiences.

  • PDF

A Tracking Filter with Motion Compensation in Local Navigation Frame for Ship-borne 2D Surveillance Radar (2 차원 탐색 레이다를 위한 국부 항법 좌표계에서의 운동보상을 포함한 추적필터)

  • Kim, Byung-Doo;Lee, Ja-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.507-512
    • /
    • 2007
  • This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.

Study on the Disturbance Applied to Launcher Hatch by Ship Motions (함정운동에 의해 발사대 해치에 작용하는 외란에 관한 연구)

  • Byun, Young-Chul;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1111-1118
    • /
    • 2013
  • In this paper, the disturbance applied to launcher hatch by ship motions is introduced to identify the vertical ship motion disturbance. Basically, ship motions are comprised of 6 degrees of freedom: roll, pitch, yaw, heave, surge and sway. In the case of the shipboard launcher hatch the coupled pitch, heave and roll are significant motions to be transformed to a vertical direction motion. The maximum acceleration values are obtained from the vertical motion model and the ship motion data in accordance with ship type and hatch location on the ship. We verify that the maximum pitch motion mainly influences the launcher hatch and also present the quantity of the maximum load disturbance by the ship's motion acceleration.

A Study on Development of Sway Velocity Reference Model During Auto-berthing/Unberthing Through Analysis of Ship's Berthing/Unberthing Data (선박의 이/접안 데이터 분석을 통한 자동 이/접안 시 횡방향속도 참조모형 개발에 관한 연구)

  • Kim, Jung-Hyeon;Jo, Hyun-Jae;Kim, Su-Rim;Lee, Jun-Ho;Park, Jong-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.358-365
    • /
    • 2021
  • Crabbing motion is a pure sway motion with only sway velocity. The ship's crabbing motion is essential for an ideal berthing/unberthing process. The unberthing situation proceeds in sequential order such as crabbing motion section, pivoting section, and outer port section. For the berthing situation, the sequence has a reverse order: the inner port section, pivoting section, and crabbing motion section. In this paper, the berthing/unberthing data of the reference ship, Pukyong National University research ship "NARA", was analyzed to develop a sway velocity reference model. Several constraints were defined to derive the crabbing motion section during berthing/unberthing. The sway velocity reference model for the auto-berthing/unberthing was developed using the estimated sway velocity. A reproduction simulation of the ship was performed to compare the designed reference model and the reference ship data.

A Study on the Propulsion Performance of KCS in Still Water and Regular Wave

  • Lee, Sang-Min;Jeong, Uh-Cheul;Kim, Dae-Hae
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • Since most merchant vessels are mainly influenced by the added resistance in an actual sea, they could be navigated more efficiently if this added resistance could be precisely predicted and then effectively reduced. In this paper, we have computed the effective horsepower based on the resistance performance in still water and then calculated the added resistance in regular wave in order to estimate a ship's propulsion performance on a voyage. Firstly, we have performed experiments using a model of KCS in a circulating water channel to estimate the flow characteristics around a container ship and the ship's resistance in still water. Then we have calculated the motion response function in regular wave as well as the values for the increase in resistance, and evaluated the ship's motion performance in waves according to the calculated response function. It was found that the resistance in waves increased because the ship's motion response value became larger as the ship's speed increased in the case of head sea. The effect of the added resistance could be reduced by maneuvering the ship to the encounter angle of $120^{\circ}$ in areas of long wavelengths and to head sea in areas of short wavelengths.

Collision Test between Ice Floe and Ship Transiting the Pack Ice

  • Kim, Hyo-Il;Sawamura, Junji;Jun, Seung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.37-39
    • /
    • 2015
  • The ships transiting the Northern Sea Route (NSR) have been gradually increased so that the number of ship-ice collision accidents would be increased. The collision between ship and ice floe can lead to serious damage of hulls and decline of ship's maneuverability. In this study, collision tests that a model ship is forced to collide with disk-shaped synthetic ice floes are conducted in a towing tank. The synthetic ice floes made of polypropylene which has similar density with real ice are used. The ice load is measured by a load cell installed on the carriage rod. The ice floe's motion is measured by a motion sensor installed on the synthetic ice floe. The influences of contact conditions such as hull form and ship speed on the ship-ice collision response are investigated and discussed by measured peak force and ice floe's motion.

  • PDF

A study on the turning-motion of T/S SAEBADA in shallow water (실습선 새바다호의 천수역 선회운동에 관한 연구)

  • KIM, Su-Hyung;LEE, Chun-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.3
    • /
    • pp.273-283
    • /
    • 2019
  • The authors has predicted the maneuvering characteristics of a fishing vessel in deep water using Kijima's empirical formula in a previous study. Since the Kijima's empirical formula was developed by a regression analysis of merchant vessels which have dimensions ($C_b$, L/B, etc.) that are different from those of fishing vessels, it was possible to make a prediction approximately even with inaccurate estimation. In this study, the authors estimated the turning-motion characteristics of a model ship of fisheries training ship in shallow water based on the results of its previous study. The turning-motion characteristics of the model ship in shallow water was found out through quantitative analysis according to the water depth to ship draft ratio (H/d). In conclusion, the turning-motion characteristics of the model ship had significant changes immediately after an H/d 1.5, and this result will be helpful for sailing in shallow water.

On the Study of the Motion Response of a Vessel Moored in the Region Sheltered by Inclined Breakwaters (경사진 방파제에 계류된 선체 운동응답에 관한 연구)

  • Cho, I.H.;Hong, S.Y.;Hong, S.W.
    • Journal of Korean Port Research
    • /
    • v.6 no.2
    • /
    • pp.33-42
    • /
    • 1992
  • In this paper we investigate the motion response of a moored ship in the fluid region sheltered by inclined breakwaters. The matched asymptotic expansion technique is employed to analyze the wave fields scattered by the inclined breakwaters. Fluid domain is subdivided into the ocean, entrance and sheltered regions. Unknown coefficients contained in each region can be determined by matching at the intermediate zone between two neighboring regions. The wave field generated by the ship motion can be analyzed in terms of Green's function method. To obtain the velocity jump across the ship associated with the symmetric motion modes, the sheltered region is further divided into near field of the ship and the rest field. The image method is introduced to consider the effect of the pier near the ship. The integral equation for the velocity jump is derived by the flux matching between the inner region and the outer region of a moored ship. Throughout the numerical calculation it is found that the inclined angle width of entrance of breakwaters as well as the location of moored vessel play an important role in the motion response of a moored ship.

  • PDF

Modeling and Simulation of a Ship with Anti-Rolling Devices in Waves (자세제어장비를 장착한 선박의 파랑중 운동 모델링 및 시뮬레이션)

  • 윤현규;이경중;이창민
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.285-290
    • /
    • 2004
  • Wave exciting force and moment generate the motions of a ship in waves. Since ship motion exerts the negative influences on a crew's operability, the safety of cargos, passenger's comfort, etc, the anti-rolling devices may be required to reduce such motion. In this paper, the dynamics of the anti-rolling devices such as passive and active moving weight stabilizer and anti-rolling tank, and fin stabilizer are mathematically modeled. While the effect of the motion of the anti-rolling device on a ship was taken into consideration in roll mode only in the past, the 6 DOF coupled equations of motion between a ship and the anti-rolling devices are constituted. Finally the motion of a ship with anti-rolling devices in waves is simulated through the developed simulation program.

  • PDF

A Study on the Sea-sickness Susceptibility of Seafarer at the Wheel House and Engine Room (조타실과 기관실 근무자의 뱃멀미 민감성에 대한 연구)

  • Kim, Deug-Bong;Kim, Bu-Gi;Rim, Geung-Su;Kim, Hong-Ryoel;Kim, Chang-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.42-48
    • /
    • 2014
  • Seasickness not only makes persons on board vessels to vomit but also causes vertigo, headache, sleepiness, fatigue, lethargy and other discomforts. This ailment leads to disturbance of biorhythm and decline of perception which would eventually cause reduction of situational awareness among ship's operators that leads to marine accident. This study is about the sensitivity of people onboard ships to seasickness and focused on deck or navigation officer cadets(apprentice officers) and engine officer cadets(apprentice engineers) who have no previous experiences on board. It is conducted by using motion sensor that can measure ship's X, Y, Z-axis motions and through the questionnaire survey, and evaluated each students' degree of seasickness symptoms. Through this study, in same circumstance, we have known that there are different degrees of motion sickness for wheel house worker and engine room worker, It also confirmed that seasickness have high relationship with degree of hull motion and also, with cycle of hull motion. In addition, we have confirmed that Z-axis hull movement has higher relationship with seasickness than X-axis and Y-axis hull movements. This study aims to initiate additional researches about X-axis and Y-axis of the ship's motion which it expects to greatly enhance safety of wheelhouse and engine room personnel, ship's livability and comfortable sailing.