• Title/Summary/Keyword: Shifter

Search Result 392, Processing Time 0.025 seconds

An Optimized Hardware Design for High Performance Residual Data Decoder (고성능 잔여 데이터 복호기를 위한 최적화된 하드웨어 설계)

  • Jung, Hong-Kyun;Ryoo, Kwang-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5389-5396
    • /
    • 2012
  • In this paper, an optimized residual data decoder architecture is proposed to improve the performance in H.264/AVC. The proposed architecture is an integrated architecture that combined parallel inverse transform architecture and parallel inverse quantization architecture with common operation units applied new inverse quantization equations. The equations without division operation can reduce execution time and quantity of operation for inverse quantization process. The common operation unit uses multiplier and left shifter for the equations. The inverse quantization architecture with four common operation units can reduce execution cycle of inverse quantization to one cycle. The inverse transform architecture consists of eight inverse transform operation units. Therefore, the architecture can reduce the execution cycle of inverse transform to one cycle. Because inverse quantization operation and inverse transform operation are concurrency, the execution cycle of inverse transform and inverse quantization operation for one $4{\times}4$ block is one cycle. The proposed architecture is synthesized using Magnachip 0.18um CMOS technology. The gate count and the critical path delay of the architecture are 21.9k and 5.5ns, respectively. The throughput of the architecture can achieve 2.89Gpixels/sec at the maximum clock frequency of 181MHz. As the result of measuring the performance of the proposed architecture using the extracted data from JM 9.4, the execution cycle of the proposed architecture is about 88.5% less than that of the existing designs.

Design and Experiment of Ku_band Linear Active Phased Array Antenna System (Ku 대역 선형 능동 위상 배열 안테나 시스템 설계 및 실험)

  • Ryu Sung-Wook;Eom Soon-Young;Yun Jae-Hoon;Jeon Soon-Ick;Kim Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.694-705
    • /
    • 2006
  • In this paper, the linear active phased array antenna system operated in Ku DBS band was designed and experimented. The antenna system was composed of sixteen radiating active channels and Wilkinson power combiners with 16-channel inputs, a stabilizing DC bias and phase control board. Electrical beams of the antenna system can be formed by controling the phase-states of 3-bit digital phase shifter inside each active channel by virtue of the phase control board. The amplitude and phase deviations measured between active channels were less than ${\pm}0.8dB$ and ${\pm}15^{\circ}$, respectively, and the noise figure of each active channel was measured less than 1.2 dB in the operating band. The measured performances of the overall antenna system showed the antenna gain of more than 23.07 dBi and the sidelobe level of less than -11.17 dBc, and the bore-sight cross-polarization level of less than -12.75 dBc in the operating band. Also, by phase-controlling active channels, the beam scan patterns at $10^{\circ},\;20^{\circ},\;30^{\circ}$ were measured, and the losses caused by the corresponding beam scanning were 1.1 dB, 2.5 dB and 3.6 dB from the measurements, respectively.

A Novel Method for Rejection of the Spurious Signal in Weaver-Type Up-Conversion Mixer (위버구조 상향변환 혼합기의 스퓨리어스 신호 제거 방법)

  • 김영완;송윤정;김유신;이창석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.661-668
    • /
    • 2004
  • A novel method to reject the spurious signals which are occurred at Weaver-type low-IF transmitter was proposed in this paper. The spurious signals are generated by the gain and phase imbalances of I/Q channel or imperfect characteristics of 90$^{\circ}$ phase shifter in local oscillator for I/Q channel source. By deriving the gain and phase-based functions from RF spurious signal with the channel imbalance information, the lie channel imbalances were deduced as functions with magnitude and sign dependent on I/Q channel imbalance degree. The proposed method compensates the estimated I/Q channel imbalances by correlation values between the down-converted signal obtained by squaring the output signal itself using a simple mixer and the modified baseband signal. By comparing two signals after A/D conversion, the magnitude and sign of each type of imbalances can be determined separately and simultaneously. Based on the I/Q channel imbalance compensation, the spurious signals can be reduced by adjusting the gain and phase values of I or Q channel signal. The way to estimate the channel imbalances of the up-conversion mixer was presented and verified by using theoretical derivations and computer simulations.

A Design and Fabrication of the X-Band Transmit/Receive Module for Active Phased Array SAR Antennas (능동 위상 배열 SAR 안테나를 위한 X-대역 송수신 모듈의 설계 및 제작)

  • Chong, Min-Kil;Kim, Sang-Keun;Na, Hyung-Gi;Lee, Jong-Hwan;Yi, Dong-Woo;Baik, Seung-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1050-1060
    • /
    • 2009
  • In this paper, a X-Band T/R-module for SAR(Synthetic Aperture Radar) systems based on active phased array antennas is designed and fabricated. The T/R modules have a and width of more than 800 MHz centered at X-Band and support dual, switched polarizations. The output power of the module is 7 watts over a wide bandwidth. The noise figure is as low as 3.9 dB. Phase and amplitude are controlled by a 6-bit phase shifter and a 6-bit digital attenuator, respectively. Further the fabricated T/R module has est and calibration port with directional coupler and power divider. Highly integrated T/R module is achieved by using LTCC(Low Temperature Co-fired Ceramic) multiple layer substrate. RMS gain error is less than 0.8 dB max. in Rx mode, and RMS phase error is less than $4^{\circ}$ max. in Rx/Tx phase under all operating frequency band, or the T/R module meet the required electrical performance m test. This structure an be applied to active phase array SAR Antennas.

Developement of Planar Active Array Antenna System for Radar (평면형 능동 위상 배열 레이더용 안테나 시스템 개발)

  • Chon, Sang-Mi;Na, Hyung-Gi;Kim, Soo-Bum;Lee, Jeong-Won;Kim, Dong-Yoon;Kim, Seon-Joo;Ahn, Chang-Soo;Lee, Chang-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1340-1350
    • /
    • 2009
  • The design and implementation of planar Active Phased Array Antenna System are described in this paper. This Antenna system operates at X-band with its bandwidth 10 % and dual polarization is realized using dual slot feeding microstrip patch antenna and SPDT(Single Pole Double Through) switch. Array Structure is $16\times16$ triangular lattice structure and each array is composed of TR(Transmit & Receive) module with more than 40 dBm power. Each TR module includes digital attenuator and phase shifter so that antenna beam can be electronically steered over a scan angle$({\pm}60^{\circ})$. Measurement of antenna pattern is conducted using a near field chamber and the results coincide with the expected beam pattern. From these results, it can be convinced that this antenna can be used with control of beam steering and beam shaping.

Spectra Responsibility of Quantum Dot Doped Organic Liquid Scintillation Dosimeter for Radiation Therapy

  • Kim, Sung-woo;Cho, Byungchul;Cho, Sangeun;Im, Hyunsik;Hwang, Ui-jung;Lim, Young Kyoung;Cha, SeungNam;Jeong, Chiyoung;Song, Si Yeol;Lee, Sang-wook;Kwak, Jungwon
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • The aim is to investigate the spectra responsibilities of QD (Quantum Dot) for the innovation of new dosimetry application for therapeutic Megavoltage X-ray range. The unique electrical and optical properties of QD are expected to make it a good sensing material for dosimeter. This study shows the spectra responsibility of toluene based ZnCd QD and PPO (2.5-diphenyloxazol) mixed liquid scintillator. The QDs of 4 sizes corresponding to an emission wavelength (ZnCdSe/ZnS:$440{\pm}5nm$, ZnCdSeS:470, 500, $570{\pm}5nm$) were utilized. A liquid scintillator for control sample was made of toluene, PPO. The Composition of QD loaded scintillators are about 99 wt% Toluene as solvent, 1 wt% of PPO as primary scintillator and 0.05, 0.1, 0.2 and 0.4 wt% of QDs as solute. For the spectra responsibility of QD scintillation, they were irradiated for 30 second with 6 MV beam from a LINAC ($Infinity^{TM}$, Elekta). With the guidance of 1.0 mm core diameter optical fiber, scintillation spectrums were measured by a compact CCD spectrometer which could measure 200~1,000 nm wavelength range (CCS200, Thorlabs). We measured the spectra responsibilities of QD loaded organic liquid scintillators in two scintillation mechanisms. First was the direct transfer and second was using wave shifter. The emission peaks from the direct transfer were measured to be much smaller luminescent intensity than based on the wavelength shift from the PPO to QDs. The emission peak was shifted from PPO emission wavelength 380 nm to each emission wavelength of loaded QD. In both mechanisms, 500 nm QD loaded samples were observed to radiate in the highest luminescence intensity. We observed the spectra responsibility of QD doped toluene based liquid scintillator in order to innovate QD dosimetry applicator. The liquid scintillator loading 0.2 wt% of 500 nm emission wavelength QD has most superior responsibility at 6 MV photon beam. In this study we observed the spectra responsibilities for therapeutic X-ray range. It would be the first step of innovating new radiation dosimetric methods for radiation treatment.

Development of Small-sized Model of Ray-type Underwater Glider and Performance Test (Ray형 수중글라이더 소형 축소모델 개발 및 성능시험)

  • Choi, Hyeung-sik;Lee, Sung-wook;Kang, Hyeon-seok;Duc, Nguyen Ngoc;Kim, Seo-kang;Jeong, Seong-hoon;Chu, Peter C.;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.537-543
    • /
    • 2017
  • Underwater glider is the long-term operating underwater robot that was developed with a purpose of continuous oceanographic observations and explorations. Torpedo-type underwater glider is not efficient from an aspect of maneuverability, because it uses a single buoyancy engine and motion controller for obtaining propulsive forces and moments. This paper introduces a ray-type underwater glider(RUG) with dual buoyancy engine, which improves the control performance of buoyancy and motion compared with torpedo-type underwater glider. Carrying out Computational Fluid Dynamics (CFD) analysis as static pitch drift test, the performance of fluid resistance for gliding motion was identified. Based on the calculated hydrodynamic coefficients, the dynamic simulation compared and analyzed the motion performance of torpedo-type and ray-type while controlling same volume of buoyancy engine. Small-sized model of RUG was developed to perform fundamental performance tests.

A Design of a 5 GHz Low Phase Noise Voltage Tuned Dielectric Resonator Oscillator Using Loop Group Delay (루프 군지연을 이용한 저위상 잡음 5 GHz 전압제어 유전체 공진기 발진기 설계)

  • Son, Beom-Ik;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.269-281
    • /
    • 2014
  • In this paper, a systematic design of a low phase noise voltage-tuned dielectric resonator oscillator(VTDRO) using loop group delay is proposed. Designed VTDRO is closed-loop type and consists of a cascade connection of a resonator, phase shifter, and amplifier. Firstly, a reference VTDRO is fabricated and its phase noise and electrical frequency tuning range are measured. Both the phase noise and electrical frequency tuning range depend on the loop group delay. Then, a required value of loop group delay for a new VTDRO with a low phase noise can be systematically computed. In addition, its phase noise and electrical frequency tuning range can be theoretically estimated using those obtained from the measurement of the reference VTDRO. When the loop group delay increases, the phase noise decreases and the electrical frequency tuning range also decreases. The former predominantly depends on the resonator structure. Therefore we propose a systematic design procedure of a resonator with high group delay characteristics. The measured loop group delay of the new VTDRO is about 700 nsec. The measured phase noise of the new VTDRO show a state-of-the-art performance of 154.5 dBc/Hz at 100 kHz frequency offset and electrical frequency tuning range of 448 kHz for a voltage change of 0~10V. The oscillation power is about 4.39 dBm.

Design of a Low Phase Noise Vt-DRO Based on Improvement of Dielectric Resonator Coupling Structure (유전체 공진기 결합 구조 개선을 통한 저위상 잡음 전압 제어 유전체 공진기 발진기 설계)

  • Son, Beom-Ik;Jeong, Hae-Chang;Lee, Seok-Jeong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.691-699
    • /
    • 2012
  • In this paper, we present a Vt-DRO with a low phase noise, which is achieved by improving the coupling structure between the dielectric resonator and microstrip line. The Vt-DRO is a closed-loop type and is composed of 3 blocks; dielectric resonator, phase shifter, and amplifier. We propose a mathematical estimation method of phase noise, using the group delay of the resonator. By modifying the coupling structure between the dielectric resonator and microstrip line, we achieved a group delay of 53 nsec. For convenience of measurement, wafer probes were inserted at each stage to measure the S-parameters of each block. The measured S-parameter of the Vt-DRO satisfies the open-loop oscillation condition. The Vt-DRO was implemented by connecting the input and output of the designed open-loop to form a closed-loop. As a result, the phase noise of the Vt-DRO was measured as -132.7 dBc/Hz(@ 100 kHz offset frequency), which approximates the predicted result at the center frequency of 5.3 GHz. The tuning-range of the Vt-DRO is about 5 MHz for tuning voltage of 0~10 V and the power is 4.5 dBm. PFTN-FOM is -31 dBm.

A VLSI Design of High Performance H.264 CAVLC Decoder Using Pipeline Stage Optimization (파이프라인 최적화를 통한 고성능 H.264 CAVLC 복호기의 VLSI 설계)

  • Lee, Byung-Yup;Ryoo, Kwang-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.50-57
    • /
    • 2009
  • This paper proposes a VLSI architecture of CAVLC hardware decoder which is a tool eliminating statistical redundancy in H.264/AVC video compression. The previous CAVLC hardware decoder used four stages to decode five code symbols. The previous CAVLC hardware architectures decreased decoding performance because there was an unnecessary idle cycle in between state transitions. Likewise, the computation of valid bit length includes an unnecessary idle cycle. This paper proposes hardware architecture to eliminate the idle cycle efficiently. Two methods are applied to the architecture. One is a method which eliminates an unnecessary things of buffers storing decoded codes and then makes efficient pipeline architecture. The other one is a shifter control to simplify operations and controls in the process of calculating valid bit length. The experimental result shows that the proposed architecture needs only 89 cycle in average for one macroblock decoding. This architecture improves the performance by about 29% than previous designs. The synthesis result shows that the design achieves the maximum operating frequency at 140Mhz and the hardware cost is about 11.5K under a 0.18um CMOS process. Comparing with the previous design, it can achieve low-power operation because this design is implemented with high throughputs and low gate count.