• 제목/요약/키워드: Shielding radiation rate

검색결과 132건 처리시간 0.031초

방사선방어 앞치마 성능 평가 (Performance Evaluation of Radiation Protection Apron's)

  • 강종구;강병삼
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권5호
    • /
    • pp.373-377
    • /
    • 2019
  • Radiation exposure is on the rise as the working hours of radiation workers increase. Accordingly, the importance of protection products for decreasing the dose of exposure has risen, and excellent X-ray shielding ability and light weight are required. The purpose of this study is to compare the Pb which use currently and other elements in order to reduce the exposure of workers to the most effective protection products. For experiment, we used the general X-ray equipment and angiography equipment, and obtained the Pb and apron's shielding rate. When the shielding rate of Pb and apron was compared in general X-ray equipment, the shielding rate was 95.1% for Pb 0.5 mm, 96.1% for apron 0.5 mmPb and 95.6% for Bi+W 0.5 mmPb. When compared the shielding rate of each aprons in angiography equipment, 0.5 mmPb apron was the highest as 96.4% and Bi+W 0.25 mmPb apron was the lowest as 90.2% at the 50 cm distance. The shielding rate of 0.5 mmPb apron was the highest as 95.7% and Bi+W 0.25 mmPb apron was the lowest as 85.9% at the 100 cm distance. As a result of evaluating the apron efficiency through this study, 0.5 mmPb apron showed the best shielding rate, but it was the heaviest apron. 0.35 mmPb apron and Bi+W 0.25 mmPb apron weighed light but had low shielding rate. Through the results of this experiment, it is recommended that radiation workers reduce radiation exposure by using more efficient protection products.

Mechanical properties and radiation shielding performance in concrete with electric arc furnace oxidizing slag aggregate

  • Lim, Hee Seob;Lee, Han Seung;Kwon, Seung Jun
    • Journal of Ceramic Processing Research
    • /
    • 제20권4호
    • /
    • pp.363-371
    • /
    • 2019
  • In this study, physical properties of normal concrete, magnetite concrete, EAF concrete, and EAF concrete with added iron powder were evaluated and a feasibility of radiation shielding is also evaluated through irradiation tests against X-rays and gamma-rays. While the unit weight of EAF concrete (3.21 t/㎥) appeared lower than that of magnetite concrete (3.50 t/㎥), the results in compressive strength of EAF concrete were greater than those in magnetite and normal concrete. While the radiation transmission rate of normal concrete reaches 26.0% in the X-ray irradiation test, only 6.0% and 9.0% of transmission rate were observed in magnetite concrete and linear relationship with unit volume weight and radiation shielding. In the gamma-ray irradiation test, the performance of EAF and magnetite concretes appeared to be similar. Through the results on the excellent physical properties and radiation shielding performance a potential applicability of EAF concrete to radiation shielding was verified.

Analysis of radiation safety management status of medical linear accelerator facilities in Korea

  • Kwon, Na Hye;Shin, Dong Oh;Ann, So Hyun;Kim, Jin Sung;Choi, Sang Hyoun;Kim, Dong Wook
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.449-455
    • /
    • 2022
  • The rapid rise in the application of novel treatment techniques, such as intensity-modulated radiotherapy (IMRT), motivated us to survey the status of Korea's radiation safety management and the shielding designs of facilities employing medical linear accelerators (LINACs). To this end, a questionnaire was used to collect information on LINAC facilities and treatments, workload, shielding design, shielding management, and path of obtaining shielding information. Out of 100 domestic institutions, 52 responded to the survey. Approximately 70% of the institutions utilized IMRT for more than 60% of their cases, and an IMRT factor of 5 was adopted by 75% of these institutions. Over 80% of the institutions accounted for the applied time-averaged dose rate per week and instantaneous dose equivalent rates in their shielding designs. Approximately 45% of the institutions obtained important shielding information via a radiation shielding design company and the NCRP-151 report. Overall, most facilities were shown to follow the standards recommended by the relevant international agencies. However, the requirement to establish standardized shielding design information and clarify ambiguous paths for information acquisition was also highlighted. Therefore, the study's results can be used as a foundation for establishing a safety control system and for creating adequate shielding designs.

일반촬영분야에서의 3D 프린터로 제작한 텅스텐 혼합 필라멘트 차폐체의 성능평가 (Evaluation of Tungsten Blended Filament Shields Made by 3D Printer in Radiography)

  • 윤준;윤명성
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권6호
    • /
    • pp.615-621
    • /
    • 2021
  • In the medical field, radiation provides information for the diagnosis and treatment of diseases. As the use of radiation increases and the risk of exposure increases, interest in radiation protection is also rapidly increasing. Lead shielding material is mainly used, which has a risk of lead poisoning and absorption into the body. Tungsten mixed filament shielding sheets were fabricated with a size of 70 × 70 mm and a thickness of 1, 2, and 4 mm by using a 3D printer. In the general shooting experiment, the thickness of the shielding sheet is 1 ~ 5mm, the tube voltage is 60, 80, 100, 120 kVp and the tube current is 20, 40 mAs. In general photography, Tungsten showed better shielding rate compared to Brass, Copper, and Lead protective tools under all irradiation conditions, and in particular, Tungsten 5 mm showed 100% shielding rate. The 3D-printed tungsten mixed filament shielding is expected to be used as a new shield that can replace the existing lead protection tools as it shows a better shielding rate than the existing lead protection tools in Radiography.

Performance Analysis of Low-level Radiation Shielding Sheet with Diamagnetic Nanoparticles

  • Cho, Jae-Hwan;Kim, Myung-Sam
    • Journal of Magnetics
    • /
    • 제20권2호
    • /
    • pp.103-109
    • /
    • 2015
  • In this study, the authors attempted to produce a medical radiation shielding fiber that can be produced at a nanosize scale and that is, unlike lead, harmless to the human body. The performance of the proposed medical radiation shielding fiber was then evaluated. First, diamagnetic bismuth oxide, an element which, among elements that have a high atomic number and density, is harmless to the human body, was selected as the shielding material. Next, 10-100 nm sized nanoparticles in powder form were prepared by ball milling the bismuth oxide ($Bi_2O_3$), the average particle size of which is $1-500{\mu}m$, for approximately 10 minutes. The manufactured bismuth oxide was formed into a colloidal solution, and the radiation shielding fabric was fabricated by curing after coating the solution on one side or both sides of the fabric. The thicknesses of the shielding sheets prepared with bismuth oxide were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0 mm. An experimental method was used to measure the absorbed dose and irradiation dose by using the lead equivalent test method of X-ray protection goods presented by Korean Industrial Standards; the resultant shielding rate was then calculated. From the results of this study, the X-ray shielding effect of the shielding sheet with 0.1 mm thickness was about 55.37% against 50 keV X-ray, and the X-ray shielding effect in the case of 1.0 mm thickness showed shielding characteristics of about 99.36% against 50 keV X-ray. In conclusion, it is considered that nanosized-bismuth radiation shielding fiber developed in this research will contribute to reducing the effects of primary X-ray and secondary X-ray such as when using a scattering beam at a low level exposure.

Effect of different tungsten compound reinforcements on the electromagnetic radiation shielding properties of neopentyl glycol polyester

  • Can, Omer;Belgin, Ezgi Eren;Aycik, Gul Asiye
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1642-1651
    • /
    • 2021
  • In this study, isophtalic neopentyl glycol polyester (NPG-PES) based composites with different loading ratios of pure tungsten metal (W), tungsten (VI) oxide (WO3), tungsten boron (WB) and tungsten carbide (WC) composites were prepared as alternative shielding materials for ionizing electromagnetic radiation (IEMR) shielding. Structural characterizations of the composites were done. Gamma spectrometric analysis of composites for 80-2000 keV energy range was performed and their usability as IEMR shielding was discussed. As a result, the produced composites showed a shielding performance of 60-100% of the lead (the most widely used IEMR shielding material) depending on the reinforcement material, reinforcement loading rate and experimental conditions. Thus, it was reported that produced composites could be an alternative to lead shieldings that have several disadvantages as toxic properties, difficulty of processing and inelasticity.

Preliminary study for the development of radiation safety evaluation methodology for industrial kV-rated radiation generator facilities

  • Hye Sung Park ;Na Hye Kwon ;Sang Rok Kim ;Hwidong Yoo;Jin Sung Kim ;Sang Hyoun Choi;Dong Wook Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3854-3859
    • /
    • 2023
  • Background: This study aims to develop an evaluator that can quickly and accurately evaluate the shielding of low-energy industrial radiation generators. Methods: We used PyQt to develop a graphical user interface (GUI)-based program and employed the calculation methodology reported in the National Council on Radiation Protection and Measurements (NCRP)-49 for shielding calculations. We gathered the necessary factors for shielding evaluation using two libraries designed for Python, pandas and NumPy, and processed them into a database. We verified the effectiveness of the proposed program by comparing the results with those from safety reports of six domestic facilities. Results: After verifying the effectiveness of the program using the NCRP-49 example, we obtained an average error rate of 1.73%. When comparing the facility safety report and results obtained using the program, we found that the error rate was between 1.09% and 6.51%. However, facilities that did not use a defined shielding methodology were underestimated by 31.82% compared with the program (the final barrier thickness satisfied the shielding standard). Conclusion: The developed program provides a fast and accurate shielding evaluation that can assist personnel that work in radiation generator facilities and government officials in reviewing safety.

IPEM Report-78의 엑스선 스펙트럼을 이용한 방사선 방호장비의 차폐율 계산 (Calculation of Shielding Rate of Radiation Protective Equipment Using the X-ray Spectrum of IPEM Report-78)

  • 한동현
    • 한국방사선학회논문지
    • /
    • 제15권5호
    • /
    • pp.755-760
    • /
    • 2021
  • 본 연구에서는 IPEM(The Institute of Physics and Engineering in Medicine) Report 78의 진단용 엑스선 발생장치에서 방출되는 엑스선 스펙트럼 데이터를 이용하여 의료 환경에서 사용되는 주요 엑스선 방호장비의 차폐율을 계산하고, 방사선 방호분야 적용가능성을 알아보았다. 진단용 엑스선 방호에 이용되는 납 앞치마(0.3 mmPb), 갑상샘 차폐체(0.5 mmPb), 납 고글(0.5 mmPb), 납 유리(1.8, 2.7, 3.3 mmPb)를 대상으로 에어커마와 엑스선 총강도의 감소율을 통해 방사선 차폐율을 계산하였다. 그 결과 에어커마 감소율로 계산한 차폐율은 80 kV에서 96.31~100 %범위였고, 120 kV에서는 90.35~100%범위로 나타났다. 또한 본 계산의 결과가 실제 차폐율 측정한 선행연구결과와 잘 일치하여 IPEM Report 78의 엑스선 스펙트럼 데이터가 방사선 방호에 활용될 수 있을 것으로 기대된다.

EVALUATION OF BRACHYTHERAPY FACILITY SHIELDING STATUS IN KOREA OBTAINED FROM RADIATION SAFETY REPORTS

  • Keum, Mi Hyun;Park, Sung Ho;Ahn, Seung Do;Cho, Woon-Kap
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.695-700
    • /
    • 2013
  • Thirty-eight radiation safety reports for brachytherapy equipment were evaluated to determine the current status of brachytherapy units in Korea and to assess how radiation oncology departments in Korea complete radiation safety reports. The following data was collected: radiation safety report publication year, brachytherapy unit manufacturer, type and activity of the source that was used, affiliation of the drafter, exposure rate constant, the treatment time used to calculate workload and the HVL values used to calculate shielding design goal values. A significant number of the reports (47.4%) included the personal information of the drafter. The treatment time estimates varied widely from 12 to 2,400 min/week. There was acceptable variation in the exposure rate constant values (ranging between 0.469 and 0.592 ($R{\cdot}m^2/Ci{\cdot}hr$), as well as in the HVLs of concrete, steel and lead for Iridium-192 sources that were used to calculate shielding design goal values. There is a need for standard guidelines for completing radiation safety reports that realistically reflect the current clinical situation of radiation oncology departments in Korea. The present study may be useful for formulating these guidelines.

두부 CT촬영 시 비스무스 차폐체를 활용한 시각 기관의 방사선피폭평가 (Radiation Exposure Evaluation of Visual Organs using Bismuth Shielding Material on Head CT Scan)

  • 강세식;김창수;김정훈
    • 한국콘텐츠학회논문지
    • /
    • 제16권7호
    • /
    • pp.451-456
    • /
    • 2016
  • 방사선방호목적의 두부용 수학적 모의 피폭체를 제작하여 두부 CT촬영 시 시각기관(눈, 각막, 수정체)의 흡수선량을 분석하였다. 이후 안구차폐에 따른 방사선량 감소효과를 분석하였다. 그 결과 안구의 흡수선량은 에너지가 증가 할수록 높은 선량을 나타냈으며, 선량이 높은 장기는 두부를 제외하고 눈(eye), 각막(cornea), 수정체(lens) 순으로 평가되었다. 또한 눈의 경우 차폐체 전 후 선량 감소율을 약 38%에서 55%까지, 각막은 약 35%에서 52%를, 끝으로 수정체는 전면만 차폐한 경우 약 51%를 전면과 측면을 동시에 차폐한 경우 약 67%의 감소율을 나타냈다.