• Title/Summary/Keyword: Shielding materials

Search Result 563, Processing Time 0.025 seconds

Fabrication and Properties of Conductive Carbon Fiber/Polyethylene Composite Films Fabricated under High Intensity Electric Fields : Effect of Polymer Sublayer (고전기장을 이용한 도전성 탄소섬유/폴리에틸렌 복합필름의 제조 및 특성 연구 : 고분자 점착하층의 영향)

  • Park, Min;Kim, Jun-Kyung;Lim, Soon-Ho;Ko, Moon-Bae;Choe, Chul-Rim;Mironov, V.S.;Bang, Hyo-Jae;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.268-275
    • /
    • 2000
  • We investigated the effect of polymer sublayer on volumetric resistivity and tensile strength of carbon fiber (CF)/polyethylene composite films fabricated under high intensity electric fields. The dependence of volumetric resistivity and tensile strength of the films on the polymer sublayer thickness or mass part exhibited complex behavior according to CF content and CF layer density in the films. As the thickness of polymer sublayer increases, two groups of processes at thermo-mechanical forming stage would take effects in the properties of the films. The first group comprises the increase of polymer layer thickness having reduced CF content compared with central or upper part of the film and insufficient wetting of CF resulting in the loosened structure near upper film side. The second group, on the other hand, is the improvement of mobility of molten sublayer leading to better distribution of CF throughout the film thickness and the formation of more compact structure. The different degree of contribution of these two competing processes at varied CF content and CF layer density could explain complex dependence of the film properties on the polymer sublayer. These results are important to optimize the electrical and mechanical properties of highly conductive polymer films, which can be used as electromagnetic interference shielding materials.

  • PDF

Use of Mouthguard for Prevention of Oral and Maxillofacial Injury (구강악안면영역의 외상방지를 위한 마우스가드의 사용)

  • Shim, Young-Joo;Kang, Jin-Kyu
    • Journal of Oral Medicine and Pain
    • /
    • v.37 no.4
    • /
    • pp.251-256
    • /
    • 2012
  • With today's heightened interest in quality of life, leisure and sports activities were popular in the general public. Accordingly, the incidence of oral and maxillofacial injury are also rising. Use of a mouth protector to prevent the trauma of the oral and maxillofacial region is growing in importance, and among the mouth protector the mouthguard is the most commonly used. Mouthguard has been suggested to protect injuries by (1) preventing tooth injuries by absorbing and deflecting blows to the teeth; (2) shielding the lips, tongue, and gingival tissues from laceration; (3) preventing opposing teeth from coming into violent contact; (4) providing the mandible with resilient support, which absorbs an impact that might fracture the unsupported angle or condyle of the mandible; (5) preventing neck and cerebral brain injuries. Although mouthguard is effective for prevention of oral and maxillofacial injury, it is not widespread to athletes or general public and they are lack of awareness about the importance of mouthguard. We present the types and materials of mouthguard, things to consider when mouthguard fabrication, and the usage. This should be helpful in awareness about the importance and popularization of mouthguard.

Neutron Induced Capture Gamma Spectroscopy Sonde Design and Response Analysis Based on Monte Carlo Simulation (Monte Carlo 시물레이션에 기초한 포획모드 중성자-감마 스펙트럼 존데 설계 및 반응 분석)

  • Won, Byeongho;Hwang, Seho;Shin, Jehyun;Kim, Jongman;Kim, Ki-Seog;Park, Chang Je
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.154-161
    • /
    • 2015
  • For efficiently designing neutron induced gamma spectroscopy sonde, Monte Carlo simulation is employed to understand a dominant location of thermal neutron and classify the formation elements from the energy peak of capture gamma spectrum. A pulsed neutron generator emitting 14 MeV neutron particles was used as a source, and flux of thermal neutron was calculated from the twelve detectors arranged at each 10 cm intervals from the source. Design for reducing borehole effects using shielding materials was also applied to numerical sonde model. Moreover, principal elements and quantities of numerical earth models were verified through the energy spectrum analysis of capture gamma detected from a gamma detector. These results can help to enhance the signal-to-noise ratio, and determine an optimal placement of capture gamma detectors of neutron induced gamma spectroscopy sonde.

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

A Study on the Treatment of Dyeing Wastewater Using TiO2/UV (TiO2/UV 산화기술을 이용한 염색폐수처리에 관한 연구)

  • Kim, Jong-kyu;Chung, Ho-jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.392-400
    • /
    • 2004
  • This research uses the $TiO_2$/UV process to verify the most suitable condition and possibility to dispose dyeing wastewater that contains pigment and a large amount of pollutants. For this, this research has enforced experiments that compare photo adsorption, photolysis, and photo catalyst oxidation reaction, and also evaluated and analyzed the change of pH and $TiO_2$ dosage, irradiation rates of ultraviolet rays and the dosage change and injection method of $H_2O_2$. According to the results of the dyeing wastewater experiment of storehouse catalyst that uses the new form of $TiO_2$, the photo catalyst oxidation reaction proved to be more effective than photo adsorption and photolysis; 35%, 21% in the case of $TCOD_{cr}$ and 39%, 28% in the case of chromaticity. Taking into consideration the reaction time, amount of photo catalyst reaction and irradiation amount of ultraviolet rays, the decomposition efficiency of pH change proved to be most effective at pH 4. On the whole, the acidity area proved to be effective in dyeing water exclusion than neutral and alkalinity areas. Having evaluated the influence of $TiO_2$ dosage, not only does the decomposition efficiency continuously improve as the $TiO_2$ dosage increases but the shielding effect does not occur also when the $TiO_2$ is at a fixed state. The influence of ultraviolet irradiation amount concluded in the result that as the ultraviolet irradiation amount increases the decomposition efficiency continually increased, but in the case of chromaticity when the irradiation amount was higher than 37.8mW/cm2 the removal efficiency is slowed remarkably. The influence of $H_2O_2$ dosage evaluation reached the results that although the decomposition efficiency increases with the increase of $H_2O_2$ dosage, when above 150mg (total dosage: 1200mg) $H_2O_2$ consumes OH radical itself and reduces the decomposition efficiency. Also in the case of the $H_2O_2$ injection method rather than injecting in the whole amount of $H_2O_2$ (1200mg) needed at the beginning all at once, injecting divided quantities of $H_2O_2$ whenever the electric current density falls below 10mgfl reduces the wases of OH radical due to an excess of $H_2O_2$ and in tum heightens the decomposition efficiency.

Analysis of Penetration Phenomenon of High Altitude Electromagnetic Pulse into Buried Facilities with Various Moisture Content and Depth (수분 함유량 및 지하 구조물 깊이에 따른 고고도 전자기파(HEMP) 투과 현상 분석)

  • Kang, Hee-Do;Oh, Il-Young;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.644-653
    • /
    • 2013
  • In this paper, a formulation for obliquely incident electromagnetic wave has been presented for an analysis of highpower electromagnetic pulse penetration into multilayered dispersive media. Based on generalized models of measured dielectric constants and propagation channels reflecting the Earth's general features, the propagation phenomenon of the obliquely incident early-time(E1) high altitude electromagnetic pulse(HEMP) is analyzed. In addition, the polarization and critical angle are also considered. It is found that the total reflection occurs at an incident angle of about 38 degrees at the soil-rock interface, and that the parallel-polarized E1 HEMP penetrates better than the perpendicular-polarized one. The peak level of the penetrating electric field is found to be 5.6 kV/m at normal incidence, regardless of the type of polarization, and E1 HEMP is greatly reduced near the critical angle. Moreover, the penetrating E1 HEMP is analyzed as a variation of moisture content and depth of materials, resulting E1 HEMP could be useful in determining the levels of shielding required for buried facilities.

Radiation Shielding Analysis on The Spent Fuel Storage Facility for the Extended Fuel Cycle (장주기(長週期) 핵연료(核燃料) 저장시설(貯藏施設)에서의 방사선차폐해석(放射線遮蔽解析))

  • Lee, Tae-Young;Ha, Chung-Woo;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.90-96
    • /
    • 1984
  • Estimated dose rates in spent fuel pool storage with the extended fuel cycle core management were reviewed and compared with design limit after calculation with the aid of DLC-23/CASK(22 n, 18 g) nuclear data and ANISN code. Radioactivity and gamma spectrum within spent fuel assemblies were calculated with ORIGEN code by extended fuel cycle model. In the calculation of dose rate, the fuel pool geometry was assumed to be infinite slab. Also, composition materials and radiation source within assemblies which are being stored in pool storage were assumed to be uniformly distributed throughout all the assemblies. As a result of culculation of dose rate from stored assemblies and waterborne radionuclides in pool water, the calculated dose rates appear to be lower than design basis limit under normal condition as well as abnormal condition.

  • PDF

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (I) - Laser Weldability of Al-Si Coated Boron Steel Used for Hot Stamping Process - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (I) - 핫스탬핑 공정에 사용되는 Al-Si 코팅된 보론강의 레이저 용접특성 -)

  • Kim, Jong Do;Choi, So Young;Lee, Su Jin;Suh, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1367-1372
    • /
    • 2014
  • As the awareness of the environmental crisis has recently increased around the world, numerous studies in the transport industry have been conducted to solve this problem through lightweight car bodies. The hot-stamping process has been presented as solution to achieve a light weight. Hot-stamping is a method that is used to obtain ultra-high strength steel (1,500 MPa or greater) by simultaneously forming and cooling boron steel in a press die after heating it to a temperature of $900^{\circ}C$ or above. This study involved a, fundamental examination of laser parameters to investigate the laser weldability of boron steel. As a result, the following optimum parameters for the shielding gas were found: Q = 20 l/min, ${\alpha}=40^{\circ}$, d = 20mm, and l = 0 mm. The hardness of butt weldment increasesed sharply as a result of martensite formation at the fusion zone.

Surface Dose Measurement of Electron Beam within the Magnetic Field Variation (자기장 내에서 전자선의 표면선량 변화 측정)

  • Je, Jae-Yong;Noh, Kyung-Suk;Shin, Oon-Jae;Park, Cheol-Woo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.2
    • /
    • pp.103-107
    • /
    • 2008
  • Purpose: This paper describes a electron field presence of magnetic field, intensity and shape surface dose variation to clinical application possibility. Materials and Methods: The using 6 MeV electron and $10{\times}10\;cm^2$ field size, 9 hole to shielding block make the by measure the film, when the magnetic field position inside and outside of the X-Omat film and parallel plate ionization chamber using the surface dose measured. Results: Present of 4 cm to the side at angle about 3 degree from beam center, use of ring type magnetic is 0.9% increase the surface dose, lens block located in the magnetic field the surface dose 1.58% increase, half magnetic field's position on the side of them at the field center of the 3.6% increase of the surface dose. Conclusion: Surface dose variation is with magnetic field about the mean electron beam of progress direction change, orbit region patient's is inconvenient without surface dose increase percentage case goodness will be used as a useful way.

  • PDF

Evaluation on Safety of Two-bed Therapy Rooms (2인용 치료병실 안전성 평가)

  • Lee, Kyung-Jae;Cho, Hyun-Duck;Oh, Chang-Bum;Ko, Kil-Man;Park, Young-Jae;Lee, In-Won;Ahn, Hee-Yong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 2011
  • Purpose: Europe and U.S use multi-bed therapy rooms. Hereupon, this study aims to examine the safety when current one-bed therapy rooms in Seoul National University Hospital is changed into two-bed ones. Materials and Methods: This study evaluated external exposure by gamma radiation emitted from other patients and internal and external exposure caused by pollutions from other patients in case that Seoul National University Hospital installs a shielding wall between beds in existing therapy rooms. Results: When internal and external exposure was evaluated to evaluate safety of two-bed hospital rooms, 'isolation amount of patients' 5mSv exposure or below is received according to the Atomic Energy Act. Conclusion: With the increasing number of patients with thyoid cancer, patients using therapy rooms are on the rise. Therefore, improving one-person therapy rooms to two-person ones in line with international trend would increase cost reduction and management efficiency, and patients' alienation and isolation can be reduced to increase healing effects.

  • PDF