• Title/Summary/Keyword: Shielding Materials

Search Result 537, Processing Time 0.029 seconds

Magnetic Field Reduction Characteristics of Shielding Wear Materials for Workers Using AC Arc Welder (교류 아크용접기를 사용하는 작업자의 차폐복 재질에 따른 자계저감 특성검토)

  • Park, Jun-Hyeong;Min, Suk-Won;Lee, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1265-1271
    • /
    • 2010
  • Power cable of an AC arc welder can surround a body of worker at the moment of welding. Applying the boundary element method, we calculated current densities induced in organs inside a worker to study the magnetic field reduction characteristics of shielding wear materials. We knew shielding wear with high permeability materials lowers current density more than high conductivity materials. We also found current density was lowest when high permeability materials were inside high conductivity materials in double layer shielding wear.

Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation

  • Asal, Sinan;Erenturk, Sema Akyil;Haciyakupoglu, Sevilay
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1634-1641
    • /
    • 2021
  • Exposure to gamma-rays is hazardous for humans and other living beings because of their high penetration through the materials. For this reason, shielding materials (usually lead, copper and stainless steel) are used to protect against gamma rays. This study's objective was to prepare ceramic materials for gamma radiation shielding by using different natural bentonite clays. Gamma-ray attenuation performances of the prepared shielding materials at different thicknesses were investigated and evaluated for different gamma-ray energies from different standard point gamma radiation sources (251Am, 57Co, 137Cs, 60Co, and 88Y). The mass and linear attenuation coefficients of the prepared ceramics vary between 0.238 and 0.443 cm2 g-1 and between 0.479 and 1.06 cm-1, respectively, depending on their thicknesses. Results showed that these materials could be prioritized because of their evidential properties of gamma radiation protection in radiation applications.

Electromagnetic-wave Shielding by Nano Particles-contained Glass Fiber Reinforced Composite Materials (나노입자 첨가 유리섬유강화 복합재료의 전자기파 차폐특성)

  • 정우균;안성훈;원명식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1331-1334
    • /
    • 2004
  • The research on electromagnetic shielding has been advanced for military applications as well as for commercial products. Utilizing the reflective properties and absorptive properties of shielding material, the replied signal measured at the rear surface or at the signal source can be minimized. The shielding effect was obtained from materials having special absorptive properties or from structural characteristics such as stacking sequence. Recently researchers studied the electromagnetic properties of nano size particles. In this research {glass fiber}/{epoxy}/{nano particle} composites(GFR-Nano composites), was fabricated using various nano particles, and their properties in electromagnetic shielding were compared. For the visual observation of the nano composite materials, SEM(Scanning Electron Microscope) and TEM(Transmission Electron Microscope) were used. For the measurement of electromagnetic shielding, HP8719ES S-parameter Vector Network Analyser System was used on the frequency range of 8 GHz~12GHz. Among the nano particles, carbon black and Multi-Walled Carbon Nano-Tube (MWCNT) revealed outstanding electromagnetic shielding. Although silver nano particles (flake and powder) were expected to have effective electromagnetic shielding due to their excellent electric conductivities, test showed little shielding effect.

  • PDF

Effect of fiber geometry on the electromagnetic shielding performance of mortar

  • Kim, Young Jun;Yemam, Dinberu M.;Kim, Baek-Joong;Yi, Chongku
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • The increased awareness of electromagnetic wave hazards has prompted studies on electromagnetic shielding using conductive materials in the construction industry. Previous studies have explored the effects of the types of conductive materials and their mix proportions on the electromagnetic shielding performance; however, there has been insufficient research on the effect of the geometry of the conductive materials on the electromagnetic shielding performance. Therefore, in this study, the dependence of the electromagnetic shielding performance on the cross-sectional geometry, diameter and length of fibers was investigated. The results showed that the electromagnetic shielding performance improved when the fiber length increased or the diameter decreased, but the effect of the cross-sectional geometry of the fibers was smaller than the effect of the fiber spacing factor.

Effects of Cr and Al Sputtered sheet for the Electromagnetic Shielding (전자차폐(電磁遮蔽)를 위한 크롬 및 알루미늄 스퍼터링의 효과)

  • Kim, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.73-79
    • /
    • 2001
  • In this paper, shielding effectiveness(SE) of the shielding material of electromagnetic(EM) waves was investigated with actual experiments. The materials used in this study were made up of sputtering, film and powder of conductive materials - Cr, Al, Ag and Cu etc. Also, the polyester film was used as a base material. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that silver, copper, aluminum and chromium were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of density of particles on the SE were studied when the sputtering. The SE strongly depended on the electric resistance by density of sputtering and painting particles. SE increased as the density of particles was increasing.

  • PDF

A Study on the Shielding of Orbit by 3D Printed Filament in Brain CT (Brain CT검사 시 3D프린터 필라멘트에 따른 수정체 차폐 연구)

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2021
  • The CT can accurately present the anatomical structure of an organ in the human body, and the resolution of the image is excellent. On Brain CT examination, the radiation sensitivity of the orbit is high and it is subject to many exposure effects. To reduce exposure dose of lens, this study compares change of exposure dose and shielding rate about non-shielding and shielding in a way of using two shielding materials, bismuth and tungsten. In this study, we used bismuth and tungsten filament as shielding materials made by 3D printing to measure the exposure dose according to the materials thickness and each of slices. To compare each shielding rate, 1 mm to 5 mm of two materials was measured with the head phantom fixed and the Magicmax universal dosimeter placed on the eye when the shielding material is not placed, and the shielding material is placed on it. In the 1 mm thick filament, the bismuth filament showed 26.8% and the tungsten filament showed 43.1% shielding rate. Therefore, tungsten presents much greater shielding effect than bismuth.

Research Trends in Electromagnetic Shielding using MXene-based Composite Materials

  • Siyeon Kim;Jongmin Byun
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.57-76
    • /
    • 2024
  • Recent advancements in electronic devices and wireless communication technologies, particularly the rise of 5G, have raised concerns about the escalating electromagnetic pollution and its potential adverse impacts on human health and electronics. As a result, the demand for effective electromagnetic interference (EMI) shielding materials has grown significantly. Traditional materials face limitations in providing optimal solutions owing to inadequacy and low performance due to small thickness. MXene-based composite materials have emerged as promising candidates in this context owing to their exceptional electrical properties, high conductivity, and superior EMI shielding efficiency across a broad frequency range. This review examines the recent developments and advantages of MXene-based composite materials in EMI shielding applications, emphasizing their potential to address the challenges posed by electromagnetic pollution and to foster advancements in modern electronics systems and vital technologies.

Performance Evaluation on the Reinforcing Material of Plastic Composites for the Electromagnetic Shielding (전자차폐(電磁遮蔽)를 위한 플라스틱 복합재료용(複合材料用) 강화재(强化材)의 성능평가(性能評價))

  • Kim, Dong-Jin;Murakami, Ri-ichi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1048-1054
    • /
    • 1999
  • It is important to study the shielding effectiveness(SE) of reinforcing material of plastic composite materials against the electromagnetic(EM) waves. In this paper, SE of the shielding material of EM waves was investigated with actual experiments. The materials used in this study were made up of film, fiber and powder of conductive materials - Cu, Al, CF etc. Also, The resin film was used as matrix. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that copper, aluminum and carbon fiber were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of interval of wires on the SE were studied when the orientation and the space of Cu wires were changed. The SE strongly depended on the. orientation and the space of the Cu wire. SE decreased as the space of the Cu wires was increasing.

Evaluation of Electromagnetic Shielding Performance of SiC and Graphite Mixed Mortar (SiC 및 흑연 혼입 모르타르의 전자파 차폐 성능 평가)

  • Park, Oh-Seong;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.459-468
    • /
    • 2021
  • Blocking electromagnetic waves on the exterior walls of buildings effectively reduces the intensity of electromagnetic fields in buildings, which leads to attenuation of electromagnetic disturbances, so there is a great interest in developing technologies. In this study, SiC by-products and graphite generated in the semiconductor field were selected and mixed into mortar after pretreatment such as pulverization to evaluate their physical properties and electromagnetic wave shielding performance. Considering the economic efficiency of each shielding material, only 10% volume of the outermost side of the experiment was mixed with each shielding material to evaluate the shielding performance. The shielding performance was predicted when the experiment was manufactured by mixing the shielding material with the entire volume of the experiment using the shielding effect evaluation formula. The results of the experiment showed that the shielding performance was up to 20 dB when SiC grains were mixed with shielding materials, the shielding performance was up to 18 dB when graphite powder was mixed with shielding materials, and the shielding performance was up to 28 dB when SiC powder was mixed with shielding materials, and the shielding performance was close to 30 dB, which is known to have a shielding rate of 99.9%.

Characteristics of Wireless Power Transmission Using Superconductor Coil to Improve the Efficiency According to the Shielding Materials (초전도 공진 코일의 효율성을 높이기 위한 차폐 재질에 따른 무선전력전송 효율비교 분석)

  • Lee, Yu-Kyeong;Jeong, In-Sung;Hwang, Jun-Won;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.684-688
    • /
    • 2016
  • The magnetic resonance method requires high quality factor(Q-factor) of resonators. Superconductor coils were used in this study to increase the Q-factor of wireless power transfer(WPT) systems in the magnetic resonance method. The results showed better transfer efficiency compared to copper coils. However, as superconducting coils should be cooled below critical temperatures, they require cooling containers. In this viewpoint, shielding materials for the cooling containers were applied for the analysis of the WPT characteristics. The shielding materials were applied at both ends of the transmitter and receiver coils. Iron, aluminum, and plastic were used for shielding. The electric field distribution and S-parameters (S11, S21) of superconducting coils were compared and analyzed according to the shield materials. As a result, plastic shielding showed better transfer efficiency, while iron and aluminum had less efficiency. Also, the maximum magnetic field distribution of the coils according to the shielding materials was analyzed. It was found that plastic shielding had 5 times bigger power transfer rate than iron or aluminum. It is suggested that the reliability of superconducting WPT systems can be secured if plastic is used for the cooling containers of superconducting resonance coils.