• Title/Summary/Keyword: Shielding Calculation

Search Result 136, Processing Time 0.031 seconds

Calculation Formula for Shielding Thickness of Direct Shielded Door installed in Treatment Room using a 6 MV X-ray Beam (6 MV X-선 빔을 사용하는 치료실에 설치되는 직접 차폐식 도어의 차폐 두께 계산식)

  • Park, Cheol Seo;Kim, Jong Eon;Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.545-552
    • /
    • 2020
  • The purpose of this study is to derive a lead thickness calculation formula for direct-shielded doors based on NCRP Report No.151 and IAEA Safety Report Series N0.47. After deriving the dose rate calculation formula for the direct shielded door, this formula was substituted for the lead shielding thickness calculation formula to derive the shielding thickness calculation formula at the door. The lead shielding thickness calculated from the derived direct shielded door shielding thickness calculation formula was about 6% lower than that calculated by the NCRP and IAEA secondary barrier shielding thickness calculation methods. This result is interpreted as meaning that the thickness calculation is more conservative from the NCRP and IAEA secondary barrier shielding thickness calculation methods and fits well for secondary beam shielding. In conclusion, it is thought that the formula for calculating lead shielding thickness of the direct shielded door derived in this study can be usefully used in the shield design of the door.

Space Radiation Shielding Calculation by Approximate Model for LEO Satellites

  • Shin Myung-Won;Kim Myung-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Two approximate methods for a cosmic radiation shielding calculation in low earth orbits were developed and assessed. Those are a sectoring method and a chord-length distribution method. In order to simulate a change in cosmic radiation environments along the satellite mission trajectory, IGRF model and AP(E)-8 model were used. When the approximate methods were applied, the geometrical model of satellite structure was approximated as one-dimensional slabs, and a pre-calculated dose-depth conversion function was introduced to simplify the dose calculation process. Verification was performed with mission data of KITSAT-1 and the calculated results were also compared with detailed 3-dimensional calculation results using Monte Carlo calculation. Dose results from the approximate methods were conservatively higher than Monte Carlo results, but were lower than experimental data in total dose rate. Differences between calculation and experimental data seem to come from the AP-8 model, for which it is reported that fluxes of proton are underestimated. We confirmed that the developed approximate method can be applied to commercial satellite shielding calculations. It is also found that commercial products of semi-conductors can be damaged due to total ionizing dose under LEO radiation environment. An intensive shielding analysis should be taken into account when commercial devices are used.

Monte Carlo shielding evaluation of a CSNS Multi-Physics instrument

  • Liang, Tairan;Shen, Fei;Yin, Wen;Xu, Juping;Yu, Quanzhi;Liang, Tianjiao
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1998-2004
    • /
    • 2019
  • The Multi-Physics (MP) instrument is one of 20 neutron spectrometers planned in the China Spallation Neutron Source (CSNS). This paper presents a shielding calculation for the MP instrument using Monte Carlo codes MCNPX and FLUKA. First, the neutrons that escape from the CSNS decoupled water moderator and are delivered to the beam line of the MP instrument are calculated to use as the source term of the shielding calculation. Then, to validate the calculation method based on multiple variance reduction techniques, a cross check between MCNPX and FLUKA codes is performed by comparing the calculation results of the dose rate distribution on a simplified beam line model. Finally, a complete geometry model of the MP instrument is set up, and the primary parameters for the shielding design are obtained according to the calculated dose rate map considering different worst-case scenarios.

Validation of MCS code for shielding calculation using SINBAD

  • Feng, XiaoYong;Zhang, Peng;Lee, Hyunsuk;Lee, Deokjung;Lee, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3429-3439
    • /
    • 2022
  • The MCS code is a computer code developed by the Ulsan National Institute of Science and Technology (UNIST) for simulation and calculation of nuclear reactor systems based on the Monte Carlo method. The code is currently used to solve two main types of reactor physics problems, namely, criticality problems and radiation shielding problems. In this paper, the radiation shielding capability of the MCS code is validated by simulating some selected SINBAD (Shielding Integral Benchmark Archive and Database) experiments. The whole validation was performed in two ways. Firstly, the functionality and computational rationality of the MCS code was verified by comparing the simulation results with those of MCNP code. Secondly, the validity and computational accuracy of the MCS code was confirmed by comparing the simulation results with the experimental results of SINBAD. The simulation results of the MCS code are highly consistent with the those of the MCNP code, and they are within the 2σ error bound of the experiment results. It shows that the calculation results of the MCS code are reliable when simulating the radiation shielding problems.

Calculation and Mitigation of Magnetic Field Produced by Straight Line-Conductor with Finite Length (유한장 직선도체에 의한 자계의 계산 및 감소대책)

  • Kang, Dae-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.57-67
    • /
    • 2011
  • Purpose of this study is to find the mitigation method of magnetic field by finite length multi-conductors such as indoor distribution lines and to be applicable to design of the distribution lines. For this purpose, exact formula about the components $B_x$, $B_y$, $B_z$ of magnetic field need in case of straight line-conductor with finite length forward any direction. In this study simple formula of the components were deduced and by using these formula magnetic fields for various models of line-configurations were calculated. And also a calculation method of induced currents in conductive shield was presented and using this method, programing of calculation is relatively easy and calculation time is short. The magnetic field after cancellation by these induced currents was calculated. All of calculations were performed by Matlab 7.0 programs. Through the calculation results it could be obtained followings for the mitigation of magnetic fields. The separation between conductors ought to be smaller than smaller as possible. In case of 3-phase, delta configuration is more effective than flat configuration. In case of 3-phase, unbalanced currents ought to be reduced as possible.. In case of more than two circuits of 3-phase, adequate locations of each phase-conductor such as rotating configuration of 3-phase conductors are more effective. The magnetic shielding effect of the conductive shielding sheet is very high.

Calculation of Concrete Shielding Wall Thickness for 450 kVp X-ray Tube with MCNP Simulation and Result Comparison with Half Value Layer Method Calculation (MCNP 시뮬레이션을 통한 450 kVp 엑스레이 튜브의 콘크리트 차폐벽 두께 계산 및 반가층 방법을 이용한 계산과의 결과 비교)

  • Lee, Sangheon;Hur, SamSurk;Lee, Eunjoong;Kim, Chankyu;Cho, Gyu-seong
    • Journal of Radiation Industry
    • /
    • v.10 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • Radiation generating devices must be properly shielded for their safe application. Although institutes such as US National Bureau of Standards and National Council on Radiation Protection and Measurements (NCRP) have provided guidelines for shielding X-ray tube of various purposes, industry people tend to rely on 'Half Value Layer (HVL) method' which requires relatively simple calculation compared to the case of those guidelines. The method is based on the fact that the intensity, dose, and air kerma of narrow beam incident on shielding wall decreases by about half as the beam penetrates the HVL thickness of the wall. One can adjust shielding wall thickness to satisfy outside wall dose or air kerma requirements with this calculation. However, this may not always be the case because 1) The strict definition of HVL deals with only Intensity, 2) The situation is different when the beam is not 'narrow'; the beam quality inside the wall is distorted and related changes on outside wall dose or air kerma such as buildup effect occurs. Therefore, sometimes more careful research should be done in order to verify the effect of shielding specific radiation generating device. High energy X-ray tubes which is operated at the voltage above 400 kV that are used for 'heavy' nondestructive inspection is an example. People have less experience in running and shielding such device than in the case of widely-used low energy X-ray tubes operated at the voltage below 300 kV. In this study, Air Kerma value per week, outside concrete shielding wall of various thickness surrounding 450 kVp X-ray tube were calculated using MCNP simulation with the aid of Geometry Splitting method which is a famous Variance Reduction technique. The comparison between simulated result, HVL method result, and NCRP Report 147 safety goal $0.02mGy\;wk^{-1}$ on Air Kerma for the place where the public are free to pass showed that concrete wall of thickness 80 cm is needed to achieve the safety goal. Essentially same result was obtained from the application of HVL method except that it suggest the need of additional 5 cm concrete wall thickness. Therefore, employing the result from HVL method calculation as an conservative upper limit of concrete shielding wall thickness was found to be useful; It would be easy, economic, and reasonable way to set shielding wall thickness.

Analysis of Shielding Effectiveness and Estimation of Shielding Factor in Conductive and Magnetic Shields (도전성 및 자성 차폐체의 차폐효과 해석과 차폐인수 산정)

  • Kang, Dae-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.30-40
    • /
    • 2013
  • In this study the method based on flux linkage in cell was introduced in calculation of eddy currents by cell method. According to this method eddy current distribution and the loss can be evaluated and since the shielding effectiveness by flux cancelation of eddy current can be analyzed, this method is applicable to design of conductive shield. And also the formula of shielding factor were so deduced as to be applicable to finite-width infinite-length shielding sheets and infinite-length underground cable shield. These formula are adaptable to magnetic materials as well as conductive materials. As the results of calculation in model shields are follows. In case of finite-width infinite-length shielding sheet, shielding effectiveness increases with increasing of conductivity. In case of infinite-length underground cable shield, the effectiveness become higher with increasing of permeability. Especially the effectiveness is very high in materials with both high conductivity and permeability in underground cable shield.

COMPARISON OF APPROXIMATE MODELS FOR HIGH ENERGY COSMIC RADIATION SHIELDING CALCULATION (고에너지 우주방사선 차폐계산을 위한 근사모델 비교)

  • 신명원;김명현
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.151-162
    • /
    • 2002
  • Two approximate calculation models for a cosmic radiation shielding in satellite are compared with detailed 3-dimensional calculation results. One is a sectoring method and the other is a chord-length distribution method. Shielding caltulation is performed for KITSAT-1 under the assumed environment at SAA (South Atlantic Anomaly) location with AP-8 radiation spectrum model. When both approximate models are applied, calculation error is expected compared with 3-D detailed geometry calculation because of straight knock-on assumption neglecting the deflection of incident proton. However, both approximate models showed good agreements with 3-dimensional detailed Monte Carlo calculation in two dose detector locations.

A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

  • Stimpson, Shane;Liu, Yuxuan;Collins, Benjamin;Clarno, Kevin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1240-1249
    • /
    • 2017
  • An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly $2{\times}$. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilities have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly $3-4{\times}$, with a corresponding 15-20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of $2{\times}$. In total, the improvements yield roughly a $7-8{\times}$ speedup. Given these performance benefits, these approaches have been adopted as the default in MPACT.

Calculation of induced currents and analysis of shielding effectiveness in finite conductive shield (도전성 유한 차폐판의 유도전류 계산 및 차폐효과 분석)

  • Kang, Dael-Ha;Son, Jung-Dae;Lee, Yung-Sik;Jo, Yeong-Ho;Choi, Phil-Soo;Park, Sang-Ho;Kim, Won-Hi
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.551-552
    • /
    • 2011
  • In this study new evaluation method of eddy currents in conductive shielding sheets are introduced. This method is based on the magnetic flux linkage in rectangular cells. According to this method the allocated amount of memory and the calculation time can be reduced. In this method calculation of magnetic field in any space can be performed by summing contributions of source currents and eddy currents in conductive shielding sheets. This method is applicable to the design of magnetic field-shield.

  • PDF