• Title/Summary/Keyword: Shielding Analysis

Search Result 453, Processing Time 0.032 seconds

Analysis on the Induced Lightning Shielding Effect According to the Neutral Wire Installation Structure of a 22.9kV Distribution Line (22.9kV 배전선로 중성선 설치 구조에 따른 유도뢰 차폐효과 분석)

  • Kim, Jeom-Sik;Kim, Do-Young;Park, Yong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • The electricity distribution system in Korea is adopting a multi-grounding system. Protection of this distribution system against lightning is performed by installing overhead ground wires over the high voltage wires, and connecting the overhead ground wires to the ground every 200 m. The ground resistance in this system is limited not to exceed $50\Omega$ and overhead ground wire and neutral wire are multiple parallel lines. Although overhead ground wire and neutral wire are installed in different locations on the same pole, this circuit configuration has duplicated functions of providing a return path for unbalanced currents and protecting the distribution system against induced lightning. Therefore, the purpose of this study is to analyze the induced lightning shielding effect according to the neutral wire installation structure of a 22.9kV distribution line in order to present a new 22.9kV distribution line structure model and characteristics. This study calculated induced lightning voltage by performing numerical analysis when an overhead ground wire is present in the multi-grounding type 22.9kV distribution line structure, and calculated the induced lightning shielding effect based on this calculated induced lightning voltage. In addition, this study proposed and analyzed an improved distribution line model allowing the use of both overhead wire and neutral wire to be installed in the current distribution lines. The result of MATLAB simulation using the conditions applied by Yokoyama showed almost no difference between the induced lightning voltage developed in the current line and that developed in the proposed line. This signifies that shielding the induced lightning voltage through overhead wire makes no difference between current and proposed distribution line structures. That is, this study found that the ground resistance of the overhead wire had an effect on the induced lightning voltage, and that the induced lightning shielding effect of overhead wire is small.

Radiation Shielding Analysis for Conceptual Design of HIC Transport Package (HIC 전용 운반용기 개념설계를 위한 방사선 차례해석)

  • Cho Chun-Hyung;Lee Kang-Wook;Lee Yun-Do;Choi Byung-Il;Lee Heung-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.457-463
    • /
    • 2005
  • KHNP(Korea Hydro and Nuclear Power Ltd., Co.) is developing a HIC transport package which is satisfying domestic and IAEA regulations and NETEC(Nuclear Environment Technology Institute) is conducting a conceptual design. In this study, the shielding thickness was calculated using the data from radionuclide assay program which is currently using in nuclear sites and Micro Shield code. Considering the structural safety, carbon steel was chosen as shielding material and the shielding thickness was calculated for 500 R/hr and 100 R/hr at HIC surface, respectively. Through the shielding analysis, it was evaluated that the regulation limit is satisfied when the shielding thickness is 22 cm for 500 R/hr and 17 cm for 100/hr.

  • PDF

Development and Application of 3-Dimensional Shielding Analysis Program to Analyze Total Ionizing Dose Level depending on the Satellite Structure Model (위성구조모델에 따른 방사선 총 이온화 조사량 예측을 위한 3차원 차폐두께 분석 프로그램의 개발 및 응용)

  • Cho, Young-Jun;Lee, Chang-Ho;Lee, Choon-Woo;Hwang, Do-Soon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.68-75
    • /
    • 2008
  • Space radiation environments depend on satellite mission orbit, period, and date, and it can be predicted by simulation. Total Ionizing Dose(TID) can be predicted by Dose-depth Curve which only inform the dose level depending on the shielding thickness. So detail effective shielding analysis considering real structure is necessary to predict part level TID. For this purpose, program is developed to calculate shielding thickness distribution by structure modeling and ray trace from certain point in the structure. Finally TID at certain point in the 3-dimensional structure can be calculated by integration of shielding distribution result and dose-depth curve data. Using this program, TID is analyzed at part level certain point by modeling of equipment box structure in the satellite.

  • PDF

Shielding Effects of Bimaterial Interfaces by Crack Surface Asperities (균열 표면거칠기에 의한 이종재료 계면의 차단효과)

  • 채영석;권용수;최병선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.540-547
    • /
    • 1994
  • Contact and frictional locking conditions and the effect of shielding due to contact at the facet, which could be represented by the difference in energy release rate, as a function of phase angle of loading are analyzed in this study for the case of interfacial cracks by assuming single crack-kink model. The analysis of contact effects on interfacial fracture resistance shows that relative shielding increases as the shear component was increased, which indicates a qualitative agreement with the previous experimental results.

Consideration on shielding failure and back flashover through lightning fault analysis within the country (국내에서 발생한 낙뢰고장 분석을 통한 직격뢰 및 역섬락 고찰)

  • Choi, Han-Yeol;Min, Byeong-Wook;Park, Soon-Kyu;Lee, Bong-Hee;Gu, Sung-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.280_281
    • /
    • 2009
  • The past 3 years study on the lightning faults data shows that the main reason is shielding failure rather than back flashover. Accordingly, we need to thoroughly consider about shielding failure angle of tower. Also, transmission line damage caused by shielding can be minimized if we avoid the steep slope area as a transmission line route.

  • PDF

A PRACTICAL LOOK AT MONTE CARLO VARIANCE REDUCTION METHODS IN RADIATION SHIELDING

  • Olsher Richard H.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.225-230
    • /
    • 2006
  • With the advent of inexpensive computing power over the past two decades, applications of Monte Carlo radiation transport techniques have proliferated dramatically. At Los Alamos, the Monte Carlo codes MCNP5 and MCNPX are used routinely on personal computer platforms for radiation shielding analysis and dosimetry calculations. These codes feature a rich palette of variance reduction (VR) techniques. The motivation of VR is to exchange user efficiency for computational efficiency. It has been said that a few hours of user time often reduces computational time by several orders of magnitude. Unfortunately, user time can stretch into the many hours as most VR techniques require significant user experience and intervention for proper optimization. It is the purpose of this paper to outline VR strategies, tested in practice, optimized for several common radiation shielding tasks, with the hope of reducing user setup time for similar problems. A strategy is defined in this context to mean a collection of MCNP radiation transport physics options and VR techniques that work synergistically to optimize a particular shielding task. Examples are offered in the areas of source definition, skyshine, streaming, and transmission.

The Short Circuit Analysis of a Simplified Magnetic Shielding Type High-Tc Superconducting Fault Current Limiter (단순화된 자기차폐형 고온초전도한류기 단락 특성 해석)

  • 이찬주;이승제;장미혜;현옥배;최효상;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.97-100
    • /
    • 1999
  • Nowadays the high-Tc Superconducting Fault current Limiter (SFCL) is one of the superconducting devices which are very closed to commercialization. The most popular model of High-Tc SFCL is a magnetic shielding type. A superconductor of magnetic shielding type SFCL can be stable in the superconducting state, because there is no contact between the superconductor and the normal conductor. But this model needs large place to set up and in a fault condition, mechanical vibrations may happen to damage the superconductor or total device. In this paper, to solve these problems, the simplified model of magnetic shielding type SFCL was introduced.

  • PDF

Analysis on Shielding Effectiveness of Electromagnetic Wave in Fire Pipes (물이 채워진 소화 배관의 전파 차폐도 해석)

  • Kim, Yoon-Jeung
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.94-102
    • /
    • 2016
  • When establishing shielding facilities for EMP protection, WBC effect is used to protect fire pipes and honeycomb cells are inserted into the fire pipes to improve the shielding effectiveness. At this point, the smaller unit cell of honeycombs becomes, the more likely it interrupts the flow of water, which ends up clogging the fire pipes with sediment. To prevent this phenomenon, I would suggest a design method due to the pilarization loss of water molecules that contributes to increasing the size of honeycomb cells and remaining thin-walled sufficient for required shielding effectiveness.

The Effect of Crystal and Non-Crystal Structures on Shielding Material Behaviour Under A.C. Field Excitations

  • Rahman, Nazaruddin Abd;Mahadi, Wan Nor Liza
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.9-13
    • /
    • 2013
  • Shielding effects in conductive and magnetic materials were investigated as a function of properties, thickness and diameter. In this work, evaluations on passive conductive and magnetic shield specimens were achieved through experimentation set-up using 50 Hz single and three phase induction field sources. Analysis on material microstructure properties and characteristics of shielding specimens were performed with the use of vibrating sample magnetometer (VSM) and field emission scanning electron microscopy (FESEM). An induction field at $136{\mu}T$ of single phase system and $50{\mu}T$ of three phase systems were observed to the shield specimens with the thickness ranged of 0.2 mm to 0.4 mm. It is observed that shield specimen efficiency becomes inversely proportionate to the increment of induction fields. The decrease was attributed to the surface structure texture which relates to the crystallization and non-crystallization geometrical effects.