• 제목/요약/키워드: Shielded metal arc welding

검색결과 62건 처리시간 0.026초

일부 용접공의 극저주파 자계노출평가 (Exposure Assessment of Welders to Extremely Low Frequency Magnetic Fields)

  • 정연준;홍승철
    • 한국산업보건학회지
    • /
    • 제24권4호
    • /
    • pp.509-517
    • /
    • 2014
  • Objectives: This study was conducted to investigate the patterns of exposure of welders to strong magnetic fields for extended periods of time on the basis of their daily activities as recorded in a logbook. Methods: Male workers whose main job is welding, specifically seven welders occupied with gas tungsten arc welding(GTAW), two performing shielded metal arc welding(SMAW), and ten engaged in gas metal arc welding(GMAW), were measured in terms of the degree to which they were exposed to extremely low frequency(ELF) magnetic fields over 24 hours by using an electromagnetic field meter(EMF meter), as well as based on a daily activity log. Results: The welders were exposed to $1.25{\pm}4.95{\mu}T$ of magnetic field per day on average. For those who spent more than half a day-735.26 minutes, or 51.1% of the day-at work, the figure averages $3.88{\pm}8.85{\mu}T$ with a maximum value of $221.28{\mu}T$. The subject welders spent $338.14{\pm}154.95$ minutes per day at home. During their stays at home, they were exposed to an average of $0.17{\pm}0.06{\mu}T$ with a maximum value of $3.50{\mu}T$. The maximum exposure of $221.28{\mu}T$ occurred when welders performed GMAW. The average exposure reached its highest at $17.71{\pm}6.96{\mu}T$ when conducting SMAW. Magnetic field exposure also depends upon posture: welders who sat while welding were exposed five times more than those who stood during work, and this difference is statistically significant. As for the relationship between distance from the welding power supply and maximum magnetic field exposure, maximum magnetic field exposure decreases as the distance increases. The average magnetic field exposure, in the meantime, showed no significant difference depending on distance. Conclusions: The following were observed through this study: 1) welders, while conducting jobs, are exposed to magnetic fields not only from the welding machine, but also from the surrounding base material due to the current flowing between the welding machine and base material, meaning that they are continuously exposed to a magnetic field; and 2) welders are more exposed to magnetic fields while they sit at a job compared to when they stand up.

티타늄 용접공정에서 온도특성에 따른 실딩방법에 관한 연구 (A study on the titanium welding process according to the temperature characteristics of shielding methods)

  • 정한식;정효민;이대철;이병용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.29-34
    • /
    • 2013
  • 용접과정 중에 용접부가 공기에 노출되면 용접성능을 약화시킨다. 불활성가스 텅스텐 아크용접(GTAW)법을 사용하여 티타늄 용접을 하는 경우 용접부가 자주/적색, 청색, 노란색, 회색, 흰색 등의 빛깔을 보이면 이는 용접 시 공기 중의 산소와 질소에 오염된 것을 의미한다. 따라서 용접부를 대기로부터 보호하기 위한 방법으로 실딩 가스를 사용한다. 이것은 대기에 의한 오염을 방지할 뿐만 아니라 용착부와 열영향부도 상온까지 냉각될 때까지 대기로부터 차단시킨다. 본 연구에서는 Trailing Shielding Jig 의 모양과 형태 그리고 토치보호($13{\sim}20{\ell}/min$), 후방보호($22{\sim}30{\ell}/min$), 이면보호($25{\sim}30{\ell}/min$)등 건전한 용접부에 적합한 실딩 가스에 대한 결과를 도출하였다.

SM490A의 FCAW 용접 자세별 형상에 관한 기계적 특성 연구 (A Study on the Mechanical Properties of SM490A by FCAW Welding Attitude)

  • 임광묵;이성일
    • 한국안전학회지
    • /
    • 제34권6호
    • /
    • pp.7-12
    • /
    • 2019
  • Flux Cored Arc Welding (FCAW), which has been widely used in many industries, was developed in the 1950s to supplement shortcomings of the Shielded Metal Arc Welding (SMAW). FCAW has an advantage in that it can weld regardless of postures and give good quality results in the filed with many different working conditions. In this study, SM490A (rolled steel for welding structural purpose) with different thicknesses (L:25T+R:30T) were welded using FCAW. Then the mechanical properties (tension test, bending test, hardness test, impact test and macro test) were analyzed and the following conclusions were drawn. In the tensile test, it exceeds the KS standard tensile strength range (400~510) in all welding positions, which means there is a problem in the tensile force transmission performance. In the bending test, it was found that most of the specimens did not exhibit surface rupture or other defects during bending test and they exhibit sufficient toughness even after plastic deformation. In the hardness test, all the results were lower than the standard value of 350 Hv of KS B 0893, which means they have good hardness. In the impact test, all results were larger than the KS reference value of 27J. In the macro test, they showed uniform structure state by the shape of the weld, and there was risk of lamination because no internal defects, bubbles, or impurities were found on the surface of the weld.

NCS기반 국가기술자격 용접기능장 실기평가 방법 개선에 관한 연구 (A study on Improvement in evaluation method of practical skill test of national technique qualification of Master Craftsman Welding based on NCS)

  • 정상철;최성우
    • 한국산학기술학회논문지
    • /
    • 제17권2호
    • /
    • pp.596-600
    • /
    • 2016
  • 본 논문은 국가직무능력표준(NCS)기반 국가기술자격검정의 용접분야 실기시험 평가방법 개선을 목적으로 수행된 연구에 대한 내용을 기술한 것이다. 현행 용접기능장의 실기시험 내용을 체계적으로 분석한 후 최신 용접기술 동향을 반영하고 국가직무능력표준의 능력단위, 수행준거 등을 적용하여 용접기능장 실기시험의 새로운 평가방법을 제시하였고, 자문회의 및 시범평가를 통해 그 효과를 검증하였다. 향후 한국산업인력공단 기술자격출제실에서는 본 연구를 기초로 세부직무분야 전문가를 통한 출제 기준 개정을 완료 한 후 용접기능장 국가기술자격검정에 실제 적용할 예정이다.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • 제39권4호
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

용접열영향부 충격시험편 노치 위치에 따른 파괴거동 (Failure Behaviors Depending on the Notch Location of the Impact Test Specimens on the HAZ)

  • 장윤찬;홍재근;박지홍;김동욱;이영석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.706-711
    • /
    • 2007
  • Numerical studies were performed to examine the effects of notch location of impact specimens on the failure behavior of HAZ (heat affected zone) when Charpy V-notch impact test were made at a low temperature ($1^{\circ}C$). Carbon steel plate (SA-516 Gr. 70) with thickness of 25mm for pressure vessel was welded by SMAW (shielded metal-arc welding) and specimens were fabricated from the welded plate. Charpy tests were then performed with specimens having different notch positions of specimens varying from the fusion line through HAZ to base metal. A series of finite element analysis which simulates the Charpy test and crack propagation initiating at the tip of V-notch was carried out as well. The finite element analysis takes into account the irregular fusion line and non-homogenous material properties due to the notch location of the specimen in HAZ. Results reveals that the energies absorbed during impact test depend significantly on the notch location and direction of specimen. Finite element analysis also demonstrates that the notch location of specimens, to a great extent, influences the reliability and consistency of the test.

  • PDF

Inconel 740H 니켈기 초내열합금과 TP316H 스테인리스강의 이종금속 SMA 용접부의 미세조직과 크리프 파단 특성 (Microstructure and Creep Fracture Characteristics of Dissimilar SMA Welds between Inconel 740H Ni-Based Superalloy and TP316H Austenitic Stainless Steel)

  • 신경용;이지원;한정민;이경운;공병욱;홍현욱
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.33-40
    • /
    • 2016
  • The microstructures and the creep rupture properties of dissimilar welds between the Ni-based superalloy Inconel 740H and the non-stabilized austenitic stainless steel TP316H have been characterized. The welds were produced by shielded metal arc (SMA) welding process with the AWS A5.11 Class ENiCrFe-3 filler metal, commonly known as Inconel 182 superalloy. Postweld heat treatment at $760^{\circ}C$ for 4 hours was conducted to form ${\gamma}^{\prime}$ strengthener in Inconel 740H. The austenitic weld metal produced by Inconel 182 had a dendritic microstructure, and grew epitaxially from the both sides of Inconel 740H and TP316H base metals. Since both Inconel 740H and TP316H did not undergo any solid-state transformation during welding process, there were no heat-affected-zone (HAZ) sub-regions and the coarsoned grains near the weld interface were limited to a narrow region. The hardness of Inconel 182 weld metal was ~220 Hv. The gradual hardness decrease was detected at HAZ of TP316H, and the TP316H base metal displayed the lowest hardness value (~180 Hv) whilst the Inconel 740H showed the highest hardness value (~400 Hv). Fracture after creep occurred at the center of weld metal, regardless of creep condition. It was found that during creep the cracks initiated and propagated along interdendritic regions and grain boundaries at which Laves particles enriched in Nb, Si and Cr were present. The appropriate design of weld metal was discussed to suppress the creep-induced cracking of the present dissimilar weld.

용접사업장 근로자의 흄 및 금속 노출농도에 대한 평가와 혈중 금속 농도 (Airborne Concentrations of Welding Fume and Metals of Workers Exposed to Welding Fume)

  • 최호춘;김강윤;안선희;박화미;김소진;이영자;정규철
    • 한국산업보건학회지
    • /
    • 제9권1호
    • /
    • pp.56-72
    • /
    • 1999
  • Airborne concentrations of welding fumes in which 13 different metals such as Al, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sn, Ti, and Zn were analyzed were measured at 18 factories including automobile assembly and manufactures, steel heavy industries and shipyards. Air samples were collected by personal sampler at each worker's worksite(n=339). Blood levels of Cd, Cu, Fe, Mn, Pb and Zn were also measured from samples taken from 447 welders by atomic absorption spectrometry and compared with control values obtained from 127 non-exposed workers. The results were as follows ; 1. Among various welding types, $CO_2$ welding 70.2 % were widely used, shielded metal arc welding(SMAW) 22.1 % came next, and rest of them were metal inert gas(MIG) welding, submerged arc welding(SAW), spot welding(SPOT) and tungsten inert gas(TIG) welding. 2. Welding fume concentration was $0.92mg/m^3$($0.02{\sim}15.33mg/m^3$) at automobile assembly and manufactures, $4.10mg/m^3$($0.02{\sim}70.75mg/m^3$) at steel heavy industries and $5.59mg/m^3$($0.30{\sim}91.16mg/m^3$) at shipyards, respectively, showing significant difference among industry types. Workers exposed to high concentration of welding fumes above Korean Permissible Exposure Limit(KPEL) amounted to 7.9 % and 12.5 %, in $CO_2$ welding and in SMAW at automobile assembly and manufactures and 62.7 % in $CO_2$ welding, and 12.5 % in SMAW at shipyards, and 66.2 % in $CO_2$ welding and 70.6 % in SMAW at steel heavy industries. 3. Geometric mean of airborne concentration of each metal released from welding fumes was below one 10th of KPEL in all welding types. Percentage of workers, however, exposed to airborne concentration of metals above KPEL amounted to 16.8 % in Mn and 7.6 % in Fe in $CO_2$ welding; 37.5 % in Cu in SAW, 30 % in Cu in TIG; and 25 % in Pb in SPOT welding. As a whole, 76 Workers(22.4%) were exposed to high concentration of any of the metals above KPEL. 4. There were differences in airborne concentration of metals such as Al, Cd, Cr, Cu. Fe. Mn, Mo, Ni, Pb, Si, Sn, Ti and Zn by industry types. These concentrations were higher in shipyards and steel heavy industries than in automobile assembly and manufactures. Workers exposed to higher concentration of Pb above KPEI amounted to 7.4 % of workers(7/94) in automobile assembly and manufactures. In shipyards, 19.2 % of workers(19/99) were over-exposed to Mn and 7.1 % (7/99) to Fe above KPEL. In steel heavy industries, 14.4 %(21/146), 7.5 %(11/146) and 13 %(19/146) were over-exposed to Mn, Fe and Cu, respectively. As a whole, 76 out of 339 workers(22.4%) were exposed to any of the metals above KPEL. 5. Blood levels of Cd, Cu, Fe, Mn, Pb, and Zn in welders were $0.11{\mu}g/100m{\ell}$, $0.84{\mu}g/m{\ell}$, $424.4{\mu}g/m{\ell}$, $1.26{\mu}g/100m{\ell}$, $5.01{\mu}g/100m{\ell}$ and $5.68{\mu}g/m{\ell}$, respectively, in contrast to $0.09{\mu}g/100m{\ell}$, $0.70{\mu}g/m{\ell}$, $477.2{\mu}g/m{\ell}$, $0.73{\mu}g/100m{\ell}$, $3.14{\mu}g/100m{\ell}$ and $6.15{\mu}g/m{\ell}$ in non-exposed control groups, showing significantly higher values in welders but Fe and Zn.

  • PDF

고장력강 용접부의 해수중 부식피로균열 성장특성에 관한 연구 (A study on the characteristics of corrosion-fatigue-crack propagation in the welded parts of high tensile steels under sea water)

  • 김영식;박무창
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.113-122
    • /
    • 1987
  • Ships and offshore strrctures are exposed to the corrosive surroundings, and the extablishment of the design criteria and the elucidation on the influence by this environment are requested to maintain the safety and to demonstrate the function of the structure. In this paper, the fatigue-crack-growth behavior on the compact tension specimens of quenched, tempered HT80 grade steels and RA36 high tensile steels having a single edge fatigue cracked notch respectively, were investigated under the repeated tensile stress with constant stroke in sea water for the welded parts by shielded metal arc welding. Main results obtained are summerized as follows; 1. The fatigue-crack-growth rates da/dN in sea water appeared to be greater behavior than those in air environment at the same stress intensisy factor range $\DeltaK$. 2. The correlation data of da/dN$\DeltaK$ of the two kinds of high tensile steels in sea water showed no great difference, however, the correlation data of da/dN$\DeltaK/\sigma_y$($\sigma_y$ stands for yield strength of the material) showed that the fatigue-crack-growth behavior of RA36 plate is affected by active path corrosion(APC) mechanism, while that of HT80 grade plate is mainly affected by hydrogen embrittlement mechanism.

  • PDF

LNG 저장탱크 내조용 강 용접부의 파괴인성 평가 (Evaluation of Fracture Toughness in Steel Weldment for Inner Wall of LNG Storage Tank)

  • 장재일;주장복;양영철;김우식;홍성호;권동일
    • 한국가스학회지
    • /
    • 제2권1호
    • /
    • pp.7-13
    • /
    • 1998
  • 본 연구에서는 LNG 저장탱크의 안전성을 확보하기 위한 연구의 일환으로서, 실제 탱크의 건설에서와 같은 조건으로 SMAW(Shielded Metal Arc Welding) 방식으로 용접된 $9\%$ Ni강의 X-개선 후판용접부내의 파괴인성의 변화를 평가하고 미세조직을 분석하였다. 이때 파괴인성의 평가는 본 연구자들이 제안한 '개선한 CTOD(crack tip opening displacement) 시험법'으로 행하였으며 열영향부내의 미세조직 및 파면은 광학현미경, 주사전자현미경 및 X-선 회절 분석기로 관찰하였다. 결과로부터 열영향부 내의 CTOD 값은, 평가위치가 용융선(Fusion Line-F.L.)으로 접근할수록 감소하는 경향을 나타내었다. 이는 잔류 오스테나이트의 양이 줄어들고 결정립 미세화 효과가 없어지는 영역인 결정립 조대화영역이 열영향 부내에서 차지하는 분율이 증가함에 따른 것이다. 한편, 잔류 오스테나이트의 열적 안정성이 상대적으로 감소하게 되는 F.L.${\~}$F.L.+3mm에서 온도감소에 따른 인성감소의 정도가 F.L.+5mm${\~}$F.L.+7mm보다 상대적으로 매우 큼을 알 수 있었다.

  • PDF