• 제목/요약/키워드: Shield gas flow

검색결과 19건 처리시간 0.021초

Nd:YAG 레이저를 이용한 냉연강판과 스테인레스강판의 용접 (A Study of Nd:YAG Laser Welding in Cold-reduced Carbon Steel and Stainless Steel Sheet)

  • 이철구;이우람;백운학
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.163-170
    • /
    • 2010
  • We have studied on welding dissimilar materials of cold-reduced carbon steel sheet and stainless steel sheet together by using laser beam. It is well known that stainless steel is so strong againt rust and heat, while cold-reduced carbon steel is widely used in various parts of industry. In this research we have performed some experiments to know the possibility of welding dissimilar materials using laser beam by adjusting the power output of 3kW laser. Other conditions of the experiments were as follows : the welding speed was varied in the range between 2m/min and 7m/min, argon gas and helium gas were used as shield gas, the flow value of shield gas was ranged between $10{\ell}/min$ and $30{\ell}/min$, and the gap of two materials was ranged between 0mm and 0.3mm. In order to ascertain of the welded surface, we have done the tensile strength testing, the hardness testing and the microscope observation. As a result, we have found that tensile strength was the highest at the condition of the welding speed of 4, the flow value of $20{\ell}/min$, the gap of two materials 0, and the use of helium gas. Above testings have also showed that the tensile strength was generally satisfactory since the penetration of welding was almost complete due to the thinness of the materials. In addition, the formation of the welded area was excellent when it had the highest tensile strength.

Removal of Dissolved Oxygen from the Make-up Water of NPP Using Membrane-based Oxygen Removal System

  • Chung, Kun-Ho;Kang, Duck-Won;Hong, Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.541-547
    • /
    • 1999
  • Corrosion control, in the end-shield cooling system of Wolsung Nuclear Power Plant, is directly related to the control of dissolved oxygen (DO). The current method, being used to deoxygenate the end-shield cooling water, is a chemical treatment by addition of reducing agent, hydrazine, to react with DO. This method has several limitations including high reaction temperature of hydrazine , unwanted explosive hydrogen gas production, and its intrinsic harmful property. A new approach to remove DO using a membrane-based oxygen removal system (MORS) was tried to overcome limitations of the hydrazine treatment. The DO removal efficiency of the MORS was found to be in the range 87% to 98%: The higher vacuum, the lower water flow rate and the higher water temperature tend to increase the DO removal efficiency.

  • PDF

KSTAR TOKAMAK의 열차폐막 설계 (The Design of Thermal Shield for KSTAR TOKAMAK)

  • 김동락;노영미;허남일;조승연;육종설;안귀천;도철진;권면;이경수;윤병주
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.45-47
    • /
    • 2001
  • The function of the thermal shield(TS) is to eliminate the thermal radiation from the room temperature side to the coil temperature(4.5K) region so as to reduce the thermal load on the He refrigerator. The TS is composed of multilayer insulation(MLI) which is coated very thin aluminum on the insulating material, cryopanel which is cooled by cold gaseous He, and supports which stand the cryopanel and MLI on the room temperature part. The thermal shield for the TF coils and PF coils has been located between the coils and vacuum vessel. The thermal shielding cryopanel is cooled under 80 K by a forced flow of helium gas using cooling pipes on the cryopanel.

  • PDF

디젤 soot의 크기 측정을 위한 TIER-LII 센서헤드 설계기술 개발 (A Development of TIER-LII Sensor Head Design for Diesel Soot Size Measurement)

  • 서동규;김덕진;정재우;윤여성;이춘범
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.215-220
    • /
    • 2004
  • The TIER-LII system was established and evaluated using carbon black for diesel particulate size measurement. It contains a new designed sensor head which makes it easier to be measured. Through LII signal analysis of some parameters, we can understand that there were few correlations observed in effect of temperature, shield gas flow rate, and mixture flow rate.. However, an amount of difference was observed in different size of particulates.

  • PDF

모사된 화재의 열적환경에서 열전대를 이용한 온도 측정오차에 관한 실험적 연구 (An Experimental Study on Temperature Measurement Bias using Thermocouple in Simulated Thermal Environments of Fire)

  • 한호식;윤홍석;황철홍;김성찬
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.7-13
    • /
    • 2017
  • An experimental study was conducted to identify the quantitative measurement bias for the bare-bead thermocouple (TC), which was widely used for measuring temperature in fire experiments. To this end, an apparatus could be controlled individually gas flow rate, preheating temperature and incident radiative heat flux was developed to simulate the thermal environments of fire. A relative measurement bias of bare-bead TC was evaluated with the comparison of double-shield aspirated TC. As a result, the relative measurement bias of bare-bead TC was gradually increased with the increase in radiative heat flux with constant gas temperature. The relative bias was also significantly increased with the decrease in gas temperature. Quantitatively, at the gas temperature of $20^{\circ}C$, the bare-bead TC had the relative bias of approximately 400% with the radiative heat flux of $20kW/m^2$ corresponding to thermal radiation level of the flashover. The present study was intend to provide fire researchers with methodologies for the reanalyses of temperature measured using bare-bead TC, radiation corrections, and validation of fire modeling.

자동차용 강판의 겹치기 $CO_2$ 레이저 용접에서 발생되는 플라즈마 특성에 관한 연구 (Study on the characteristics of the plasma induced by lap-joint $CO_2$ laser welding of automotive steel sheets)

  • 남기중;박기영;이경돈
    • 한국레이저가공학회지
    • /
    • 제5권1호
    • /
    • pp.33-42
    • /
    • 2002
  • In order to investigate the characteristics of the plasma induced by lap-joint CO$_2$ laser welding of automotive steel sheets, the effects of welding speed, shield gas flow rate, gap size, and laser beam defocus to plasma intensity emitted from keyhole have been investigated. The plasma light is measured by fiber and photodiode. Also, the plasma images were captured by the high speed digital camera in 1000frames/sec in order to correlate the plasma light signal with plasma pattern. From the results, it is observed that the difference of the plasma intensity for between the deep penetration and partial penetration exists from 1.2 to 2 times. The plasma light intensity decreased in case of the deep penetration Is observed due to the exhausting of the plasma gas under the sheet. On the other hand, under the conditions of the deep penetration, the plasma intensity is significantly increased by controling the conditions decreasing the penetration depth. It was specially founded that the effect of 0.3mm gap size at partial penetration condition is approximately similar to deep penetration in 0mm gap. It is concluded that the plasma intensity is able to evaluate the penetration depth in lap-joint welding and appears to offer the most straightforward correlation to the welding process.

  • PDF

열병합/산업용 보일러 화로에서의 연소 해석 (Modeling of Combustion in Co-Generation / Industrial Boiler Furnace)

  • 김병윤;박부민;이경모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.842-846
    • /
    • 2001
  • Our company produces boilers for industrial usages or power plants. The aim of this study is to investigate the flame structure, heat transfer to evaporator tube wall and NOx emission in the furnaces. Also we are to derive correct FEGT(Furnace Exit Gas Temperature) characteristic curve. When we design furnace and superheater, economizer etc. FEGT characteristic curve is very important factor for optimum design. We calculated turbulent reacting flow, heat transfer and NOx emission in furnace by using numerical modeling with the help of commercial code. Three dimensional steady state calculation is done. k-e turbulence model and equilibrium chemistry combustion model with $\beta-probability$ density function is used. To calculate radiation heat transfer discrete ordinates model is used. And we measured FEGT at several operating plants. Measurement is done by R-type thermocouple. Radiation shield is attached to the thermocouple to prevent radiation effect. Measured and calculated results show good agreement. And we could understand the flame structure and NOx formation positions in each furnaces.

  • PDF

Thermomechanical Properties of Thermal-Stress Relief Type of Functionally Gradient Materials

  • Watanabe, Ryuzo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1993년도 추계학술강연 및 발표대회강연 및 발표논문 초록집
    • /
    • pp.2-2
    • /
    • 1993
  • The present status of the thennomechanica1 evaluation of functionally gradient materials(FGMs) for space plane application was reviewed, in which research activities and the cooperation of the national project team organized to study FGM science were demonstrated. The project team was divided into three working groups; de singing, processing and evaluation, each of which had their own tasks in the project cooperation. The testings details of the various thennomechanical tests for the FGM samples fabricated by the processing groups were described, along with their corresponding heating conditions of the real environments in the space plane application. For small-sized samples, laser beam heating test and burner heating test were well applied to study the heat shielding and heat resisting properties. Arc-heated wind tunnel test and high temperature!high velocity gas flow test were used for large-sized panel assemblies having cooling structures. The criteria for the evaluation of the heat shielding and heat resisting properties of the FGMs, as well as a crack activation mechanism in their differential temperature heating, were proposed on the basis of the observation in the burner heating test.

  • PDF

환기부족 구획화재의 열적 특성 (Thermal Characteristics of Under Ventilated Compartment Fire)

  • 김성찬
    • 설비공학논문집
    • /
    • 제21권1호
    • /
    • pp.41-48
    • /
    • 2009
  • The present study has been performed to investigate the thermal characteristics of under-ventilated compartment fire which is a typical fire condition in structures. A series of fire experiments was conducted to characterize the thermally driven flow in a 2/5 scale ISO 9705 fire compartment. Three different fuels were used in this test series, methane gas, heptane pool, and polystyrene pellets fire. In order to measure accurate temperature, double shield aspirated thermocouples reducing the effect of radiative energy exchange on temperature measurement were used in addition to bare bead thermocouples. The upper layer temperature for well ventilated fire was increased with increasing heat release rate, but it was slightly decreased for under-ventilated fire. The measured temperatures in the upper layer at the front sampling location were higher than at the rear. Thermal characteristics through the doorway were also analysed for a wide range of heat release rates. This study provides a comprehensive and quantitative assessment of fire behavior for under-ventilation condition of fire.