• Title/Summary/Keyword: Shield Method

Search Result 426, Processing Time 0.035 seconds

Welding Fume and Metals Exposure Assessment among Construction Welders (건설현장 용접직종별 용접흄 및 금속류 노출 실태)

  • Park, Hyunhee;Park, Hae Dong;Jang, Jae-kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.147-158
    • /
    • 2016
  • Objectives: The objective of this study was to evaluate the assessment of exposure to welding fume and heavy metals among construction welders. Methods: Activity-specific personal air samplings(n=206) were carried out at construction sites of three apartment, two office buildings, and two plant buildings using PVC(poly vinyl chloride) filters with personal air samplers. The concentration of fumes and heavy metals were evaluated for five different types of construction welding jobs: general building pipefitter, chemical plant pipefitter, boiler maker, ironworker, metal finishing welder. Results: The concentration of welding fumes was highest among general building pipefitters($4.753mg/m^3$) followed by ironworkers($3.765mg/m^3$), boilermakers($1.384mg/m^3$), metal finishing welders($0.783mg/m^3$), chemical pipefitters($0.710mg/m^3$). Among the different types of welding methods, the concentration of welding fumes was highest with the $CO_2$ welding method($2.08mg/m^3$) followed by SMAW(shield metal arc welding, $1.54mg/m^3$) and TIG(tungsten inert gas, $0.70mg/m^3$). Among the different types of workplace, the concentration of welding fumes was highest in underground workplaces($1.97mg/m^3$) followed by outdoor($0.93mg/m^3$) and indoor(wall opening as $0.87mg/m^3$). Specifically comparing the workplaces of general building welders, the concentration of welding fumes was highest in underground workplaces($7.75mg/m^3$) followed by indoor(wall opening as $2.15mg/m^3$). Conclusions: It was found that construction welders experience a risk of expose to welding hazards at a level exceeding the exposure limits. In particular, for high-risk welding jobs such as general building pipefitters and ironworkers, underground welding work and $CO_2$ welding operations require special occupational health management regarding the use of air supply and exhaust equipment and special safety and health education and fume mask are necessary. In addition, there is a need to establish construction work monitoring systems, health planning and management practices.

Reducing Radiation Exposure Dose on Operator by Using Lateral Protection in Neuro-Intervention (뇌혈관 중재적시술에 있어 측방향 차폐체를 이용한 시술자 피폭 선량 저감화 방법 연구)

  • Kim, Jongdeok;Ahn, ByeoungJu;Lee, Junhaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • The bi-plane cerebrovascular angiography radiation is done the radiation exposure at the forward and lateral direction as opposed to the one of the source. So, the exposure dose of radiation workers increases further. Therefore, the medical diagnostic radiation workers as well as patients is interested to ways to reduce the dose. The exposure dose of cerebral angiography and interventional radiology must be considered the primary radiation of X-ray tube directly, scattered primary radiation between lateral tube and lateral detector and relatively small secondary scatter radiation in the walls of room. The aim of study is that the exposure dose of primary and scatter radiation reduce as much as possible to install protection device of lateral protection than common shielding of table and ceiling. As a result, the dose of fluoroscopy was reduced approximately 3.64 times the gonads, thyroid approximately 3.13 times, 4.42 times around eyes. And the dose of DSA was reduced approximately 4.98 times the gonads, thyroid approximately 3.00 times, 1.67 times around eyes. Consequently, medical practitioners can be helpful for radiation dose-exposure for the lateral protection of bi-plane cerebrovascular angiography more than the common shield method in cerebrovascular angiography and interventional radiological procedures.

Development of the Measurement Method of Extremely Low Level Activity with Imaging Plate (Imaging Plate를 이용한 극저준위 방사능 측정에 관한 연구)

  • Kwak, Ji-Yeon;Lee, K.B.;Lee, Jong-Man;Park, Tae-Soon;Oh, Pil-Jae;Lee, Min-Kie;Seo, Ji-Suk;Hwang, Han-Yull
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.231-236
    • /
    • 2004
  • An imaging plate(IP) detector, a two-dimensional digital radiation detector that can acquire image of radioactivity distribution in a sample, has been applied in many fields; for industrial radiography, medical diagnosis, X-ray diffraction test, etc. In this study, the possibility of IP detector to be used lot measuring radioactivity of sample is explored using its high sensitivity, higher spatial resolution, wider dynamic range and screen uniformity for several kinds radiations. First, the IP detector is applied to measure the surface uniformity for area source. Surface uniformity is measured rapidly and nondestructively by measuring the radioactivity distribution of common standard area source$(^{241}Am)$. Next, the IP is employed to study the possibility of measuring an extremely low-level activity of environmental sample. For this study the screen uniformity, shield effect of background radiation, linear dynamic range and fading effect of the IP detector is investigated. The potato, banana, radish and carrot samples are chosen to measure ultra low-level activity of $^{40}K$ isotope. The efficiency calibration of IP detector is carried out using the standard source.

A Study on the Stabilization of the Papain Enzyme in the Moderately Concentrated Anionic Surfactant System (음이온 계면활성제에서 파파인 효소의 안정도에 관한 연구)

  • Kim, Ji-Yeong;Kim, Jin-Woo;Kim, Yong-Jin;Lee, Jae-Wook;Lee, Hae-Kwang;Kang, Hak-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.2
    • /
    • pp.93-97
    • /
    • 2007
  • Even in the moderately concentrated anionic surfactant system, some special encapsulation method can shield the papain enzyme from proteolytic attacks. The stabilization of enzyme has been a major issue for successful therapies. In this study, we first stabilized an enzyme, papain in the microcapsules by using polyols, polyethyleneglycol (PEG), poly-propyleneglycol (PPG), and PEG-PPG-PEG block copolymer. In the analysis of EDS and CLSM, it was demonstrated that polyols are effectively located in the interface of papain and polymer. Polyols located in the interface had an ability to buffer the external triggers by hydrophobic partitioning, preventing consequently the catalytic activity of papain in the micro-capsules. Second. we introduced multi-layer capsulation methods containing ion complex. Such a moderately concentrated anionic surfactant system as wash-off cleansers, surfactants and waters can cause instability of entrapped enzymes. Surfactants and water in our final products swell the surface of enzyme capsules and penetrate into the core so easily that we can not achieve the effect of enzyme, papain. In this case, the ion complex multi-layer capsule composed of sodium lauroyl sarcosinate and polyquaternium-6 could effectively prevent water from penetration into the core enzyme, followed by in vivo test, and evaluate the stratum corneum (SC) turn-over speed.

Domestic and Overseas TBM Production Specification and Professional Training Program (국내외 TBM 제작 사양 및 전문인력 양성 프로그램 분석)

  • Kim, Ki-Hwan;Kim, Seong-Cheol;Kang, Si-On;Mun, Cheol-Hwa;Jeong, Yun-Young;Kim, Hyouk
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.281-291
    • /
    • 2019
  • In Overseas case, most tunnels in under are or through the river are constructed with shield TBM and the manufacturer orders of related equipment suitable for the project are mode. Accordingly, the client provides the specifications required for the equipment manufacture. In addition, TBM equipment has been operated by those who have completed the expert training program, which for minimizing the risk of equipment operation in construction field corresponding to the mechanized construction. However, in Korea, such a system related to above the program and specifications has not yet been built, which is causing a lot of difficulties in construction field. Therefore, this study investigated the differences in bidding guides provided by mechanized construction in domestic and abroad, and the professional education programs for expert training being conducted from overseas. Futhermore, we will propose the guidelines of essential equipment specification contained in domestic bidding and provide the necessary manual for the professional education program for TBM as the mechanized construction method.

Shielding Performance of PLA and Tungsten Mixture using Research Extruder (연구용 압출기를 활용한 PLA와 텅스텐 혼합물의 차폐 성능)

  • Do-Seong Kim;Tae-Hyung Kim;Myeong-Seong Yoon;Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.557-564
    • /
    • 2023
  • In this study, 3D printing technology was used to compensate for the shortcomings of the use of lead, which has proven to have excellent shielding performance, and to control unnecessary human exposure. 3D printers can implement three-dimensional shapes and can immediately apply individual ideas, which has great advantages in maintaining technology supplementation while reducing the cost and duration of prototyping. Among the various special 3D printers, the FDM method was adopted, and the filament used for output was manufactured using a research extruder by mixing two materials, PLA (Poly-Lactic-Acid) and tungsten. The purpose was to verify the validity through dose evaluation and to provide basic information on the production of chapezones of various materials. The mixed filament was implemented as a morphological shield. Filaments made of a research extruder by mixing PLA and tungsten were divided into 10 %, 20 %, 30 %, 40 %, and 50 % according to the tungsten content ratio. Through the process of 3D Modeling, STL File storage, G-code generation, and output, 10 cm × 10 cm × 0.5 cm was manufactured, respectively, and dose and shielding ability were evaluated under the conditions of tube voltages of 60 kVp, 80 kVp, 100 kVp, 120 kVp, and tube currents of 20 mAs and 40 mAs.

The Study of Radiation Reducing Method during Injection Radiopharmaceuticals (방사성의약품 투여 시 피폭선량 저감에 대한 연구)

  • Cho, Seok-Won;Jung, Seok;Park, June-Young;Oh, Shin-Hyun;NamKoong, Hyuk;Oh, Ki-Beak;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.80-85
    • /
    • 2012
  • Purpose: The whole body bone scan is an examination that visualizing physiological change of bones and using bone-congenial radiopharmaceutical. The patients are intravenous injected radiopharmaceutical which labeled with radioactive isotope ($^{99m}Tc$) emitting 140 keV gammarays and scanned after injection. The 3 principles of radiation protection from external exposureare time, distance and shielding. On the 3 principles of radiation protection basis, radiopharmaceutical might just as well be injected rapidly for reducing radiation because it might be the unopened radiation source. However the radiopharmaceuticals are injected into patient directly and there is a limitation of distance control. This study confirmed the change of radiation exposure as change of distance from radiopharmaceutical and observed the change of radiation exposure afte rsetting a shelter for help to control radio-technician's exposure. Materials & methods: For calculate the average of injection time, the trained injector measured the injection time for 50 times and calculated the average (2 minutes). We made a source as filled the 99mTc-HDP 925 MBq 0.2 mL in a 1 mL syringe and measured the radiation exposure from 50 cm,100 cm,150 cm and 200 cm by using Geiger-Mueller counter (FH-40, Thermo Scientific, USA). Then we settled a lead shielding (lead equivalent 6 mm) from the source 25 cm distance and measured the radiation exposure from 50 cm distance. For verify the reproducibility, the measurement was done among 20 times. The correlation between before and after shielding was verified by using SPSS (ver. 18) as paired t-test. Results: The radiation doses according to distance during 2 minutes from the source without shielding were $1.986{\pm}0.052{\mu}$ Sv in 50 cm, $0.515{\pm}0.022{\mu}$ Sv in 100 cm, $0.251{\pm}0.012{\mu}$ Sv in 150 cm, $0.148{\pm}0.006{\mu}$ Sv in 200 cm. After setting the shielding, the radiation dose was $0.035{\pm}0.003{\mu}$ Sv. Therefore, there was a statistical significant difference between the radiation doses with shielding and without shielding ($p$<0.001). Conclusion: Because the great importance of whole body bone scan in the nuclear medicine, we should make an effort to reduce radiation exposure during radiopharmaceutical injections by referring the principles of radiation protection from external exposure. However there is a limitation of distance for direct injection and time for patients having attenuated tubules. We confirmed the reduction of radiation exposure by increasing distance. In case of setting shield from source 25 cm away, we confirmed reducing of radiation exposure. Therefore it would be better for reducing of radiation exposure to using shield during radiopharmaceutical injection.

  • PDF

Consideration of a Bacteria Contamination Management in the Dispensation of 99mTc Radiopharmaceutical (테크네슘 방사성의약품의 조제와 분배 과정에서 오염균에 대한 고찰)

  • Choi, Do Chul;Gim, Yeong Su;Jo, Gwang Mo;Gim, Hui Jeong;Seo, Han Gyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.84-87
    • /
    • 2018
  • Purpose The radiopharmaceutical used in the nuclear medicine department is used only for the specific patient according to the prescription or instruction of the doctor without selling, so it is dispensed and it is distributed and used for the examination. Radiopharmaceuticals administered to patients should be managed appropriately as well as radiation safety management during dispensation. The purpose of this study is to investigate microbial contamination during dispensation of radiopharmaceuticals Materials and Methods This study distinguished between general workbench and clean workbench and performed three tests. First, microbial cultivation test of radiopharmaceutical prepared and dispensed in general workbenches and sterile workbenches were carried out five times, respectively. The second test was performed settle plate method three times before and after the use of the exhaust filter. Finally, Adenosine Triphosphate (ATP) measurement was performed in each workbench to measure bacterial counts. In addition, ATP measurement were carried out by designating locations and items that may be contaminated during dispensation. Results In the microbial culture test, no microorganisms were detected in both samples. In the settle plate method, it was detected without using of the exhaust filter in a general workbench once. In the ATP measurement test, it was measured at the level of 400 RLU or less, which is the standard value of contamination, in both workbenches surface. In additional ATP measurement test, the refrigerator handle in the distribution room was measured above the reference value of 1217 RLU, the vacuum vial shield of the Tech Generator at 435 RLU, and the syringe holder at 1357 RLU. After environmental disinfection, the results were reduced to 311 RLU, 136 RLU, and 291 RLU. Conclusion No contamination by bacteria was found in both workbenches. However, microbial contamination may occur if the use of an exhaust filter or proper hand hygiene is not achieved. Regular inspections and management for aseptic processing themselves will be necessary.

Consideration on Shielding Effect Based on Apron Wearing During Low-dose I-131 Administration (저용량 I-131 투여시 Apron 착용여부에 따른 차폐효과에 대한 고찰)

  • Kim, Ilsu;Kim, Hosin;Ryu, Hyeonggi;Kang, Yeongjik;Park, Suyoung;Kim, Seungchan;Lee, Guiwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.32-36
    • /
    • 2016
  • Purpose In nuclear medicine examination, $^{131}I$ is widely used in nuclear medicine examination such as diagnosis, treatment, and others of thyroid cancer and other diseases. $^{131}I$ conducts examination and treatment through emission of ${\gamma}$ ray and ${\beta}^-$ ray. Since $^{131}I$ (364 keV) contains more energy compared to $^{99m}Tc$ (140 keV) although it displays high integrated rate and enables quick discharge through kidney, the objective of this study lies in comparing the difference in exposure dose of $^{131}I$ before and after wearing apron when handling $^{131}I$ with focus on 3 elements of external exposure protection that are distance, time, and shield in order to reduce the exposure to technicians in comparison with $^{99m}Tc$ during the handling and administration process. When wearing apron (in general, Pb 0.5 mm), $^{99m}Tc$ presents shield of over 90% but shielding effect of $^{131}I$ is relatively low as it is of high energy and there may be even more exposure due to influence of scattered ray (secondary) and bremsstrahlung in case of high dose. However, there is no special report or guideline for low dose (74 MBq) high energy thus quantitative analysis on exposure dose of technicians will be conducted based on apron wearing during the handling of $^{131}I$. Materials and Methods With patients who visited Department of Nuclear Medicine of our hospital for low dose $^{131}I$ administration for thyroid cancer and diagnosis for 7 months from Jun 2014 to Dec 2014 as its subject, total 6 pieces of TLD was attached to interior and exterior of apron placed on thyroid, chest, and testicle from preparation to administration. Then, radiation exposure dose from $^{131}I$ examination to administration was measured. Total procedure time was set as within 5 min per person including 3 min of explanation, 1 min of distribution, and 1 min of administration. In regards to TLD location selection, chest at which exposure dose is generally measured and thyroid and testicle with high sensitivity were selected. For preparation, 74 MBq of $^{131}I$ shall be distributed with the use of $2m{\ell}$ syringe and then it shall be distributed after making it into dose of $2m{\ell}$ though dilution with normal saline. When distributing $^{131}I$ and administering it to the patient, $100m{\ell}$ of water shall be put into a cup, distributed $^{131}I$ shall be diluted, and then oral administration to patients shall be conducted with the distance of 1m from the patient. The process of withdrawing $2m{\ell}$ syringe and cup used for oral administration was conducted while wearing apron and TLD. Apron and TLD were stored at storage room without influence of radiation exposure and the exposure dose was measured with request to Seoul Radiology Services. Results With the result of monthly accumulated exposure dose of TLD worn inside and outside of apron placed on thyroid, chest, and testicle during low dose $^{131}I$ examination during the research period divided by number of people, statistics processing was conducted with Wilcoxon Signed Rank Test using SPSS Version. 12.0K. As a result, it was revealed that there was no significant difference since all of thyroid (p = 0.345), chest (p = 0.686), and testicle (p = 0.715) were presented to be p > 0.05. Also, when converting the change in total exposure dose during research period into percentage, it was revealed to be -23.5%, -8.3%, and 19.0% for thyroid, chest, and testicle respectively. Conclusion As a result of conducting Wilcoxon Signed Rank Test, it was revealed that there is no statistically significant difference (p > 0.05). Also, in case of calculating shielding rate with accumulate exposure dose during 7 months, it was revealed that there is irregular change in exposure dose for inside and outside of apron. Although the degree of change seems to be high when it is expressed in percentage, it cannot be considered a big change since the unit of accumulated exposure dose is in decimal points. Therefore, regardless of wearing apron during high energy low dose $^{131}I$ administration, placing certain distance and terminating the administration as soon as possible would be of great assistance in reducing the exposure dose. Although this study restricted $^{131}I$ administration time to be within 5 min per person and distance for oral administration to be 1m, there was a shortcoming to acquire accurate result as there was insufficient number of N for statistics and it could be processed only through non-parametric method. Also, exposure dose per person during lose dose $^{131}I$ administration was measured with accumulated exposure dose using TLD rather than through direct-reading exposure dose thus more accurate result could be acquired when measurement is conducted using electronic dosimeter and pocket dosimeter.

  • PDF

Reviews of Radiation Protection and Shielding for Computed Tomography in Foreign Countries (외국의 컴퓨터 단층촬영 장치의 방어시설 문헌 조사)

  • Jahng, Geon-Ho;Yang, Dal-Mo;Sung, Dong-Wook;Lee, Kwang-Yong;Kim, Hyeog-Ju
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.276-284
    • /
    • 2008
  • A computed tomography (CT) is a powerful system for the effectively fast and accurate diagnosis. The CT system, therefore, has used substantially and developed for improving the performance over the past decade, resulting in growing concerns over the radiation dose from the CT. Advanced CT techniques, such as a multidetector row CT scanner and dual energy or dual source CT, have led to new clinical applications that could result in further increases of radiation does for both patients and workers. The objective of this study was to review the international guidelines of the shielding requirements for a CT facility required for a new installation or when modifying an existing one. We used Google Search Engine to search the following keywords: computed tomography, CT regulation or shield or protection, dual energy or dual source CT, multidetector CT, CT radiation protection, and regulatory or legislation or regulation CT. In addition, we searched some special websites, that were provided for sources of radiation protection, shielding, and regulation, RSNA, AAPM, FDA, NIH, RCR, ICRP, IRPA, ICRP, IAEA, WHO (See in Table 1 for full explanations of the abbreviations). We finally summarized results of the investigated materials for each country. The shielding requirement of the CT room design was very well documented in the countries of Canada, United States of America, and United Kingdom. The wall thickness of the CT room could be obtained by the iso-exposure contour or the point source method. Most of documents provided by international organizations were explained in importance of radiation reduction in patients and workers. However, there were no directly-related documents of shielding and patient exposure dose for the dual energy CT system. Based international guidelines, the guideline of the CT room shielding and radiation reduction in patients and workers should be specified for all kinds of CT systems, included in the dual energy CT. We proposed some possible strategies in this paper.

  • PDF