• Title/Summary/Keyword: Shield Method

Search Result 432, Processing Time 0.02 seconds

Dynamic Numerical Modeling of Subsea Railway Tunnel Based on Geotechnical Conditions and Seismic Waves (지반조건과 지진파를 고려한 해저철도 터널의 동적 수치 모델링)

  • Kwak, Chang-Won;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.69-86
    • /
    • 2022
  • The railway is widely used to transport passengers and freight due to its punctuality and large transport capacity. The recent remarkable development in construction technology enables various subsea railway tunnels for continent-continent or continent-island connectivity. In Korea, design and construction experience is primarily based on the successful completion of the Boryeong subsea tunnel (2021) and the Gadeok subsea tunnel (2010). However, frequent earthquakes with diverse magnitudes, globally induced and continuously increased the awareness of seismic risks and the frequency of domestic earthquakes. The effect of an earthquake on the subsea tunnel is very complicated. However, ground conditions and seismic waves are considered the main factors. This study simulated four ground types of 3-dimensional numerical models, such as soil, rock, composite, and fractured zone, to analyze the effect of ground type and seismic wave. A virtual subsea railway shield tunnel considering external water pressure was modeled. Further, three different seismic waves with long-term, short-term, and both periods were studied. The dynamic analyses by finite difference method were performed to investigate the displacement and stress characteristics. Consequently, the long-term period wave exhibited a predominant lateral displacement response in soil and the short-term period wave in rock. The artificial wave, which had both periodic characteristics, demonstrated predominant in the fractured zone. The effect of an earthquake is more noticeable in the stress of the tunnel segment than in displacement because of confining effect of ground and structural elements in the shield tunnel. 

Reliability Demonstration Test Method for Electromagnetic Shielding Doorset with a Sub-Unit Subjected to Preventive Replacement (예방교체부품을 가지는 전자파차폐용 문세트의 신뢰성입증시험법)

  • Shin, Jung-Hun;Lee, Hyo-Kyung;Jang, Jin;Kim, Do-Sik;Nam, Tae-Yeon;Jung, Dong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1171-1177
    • /
    • 2014
  • An electromagnetic shielding doorset must satisfy requirements associated with both mechanical strength/durability and electromagnetic shielding. Among the primary components of the doorset, a finger strip-a leaftype spring normally made of beryllium copper-is a core part to shield electromagnetic waves as well as to endure repetitive dry sliding friction. This study presented a reliability demonstration test method for the doorset system and, by a simple and simultaneous implementation, of the replacement interval of the finger strip. A rigorous evaluation for the qualification of maintenance or replacement interval is included in the reliability demonstration test of any series system that holds critical maintenance sub-units.

Comparative Study on the Attenuation of P and S Waves in the Crust of the Southeastern Korea (한국 남동부 지각의 P파와 5파 감쇠구조 비교연구)

  • Chung, Tae-Woong
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2001
  • The Yangsan fault in the southeastern Korea has been receiving increasing attention in its seismic activity. In this fault region, by using the extended coda-normalization method for 707 seismograms of local earthquakes, were obtained 0.009f$^{-1.05}$ and 0.004f$^{-0.70}$ for fitting values of Q$_p^{-1}$ and Q$_s^{-1}$, respectively. These results indicate that Q$_p^{-1}$ and Q$_s^{-1}$ in the southeastern Korea is the lowest level in the world although the exponent values agree well with those in the other areas. The low Q-1 is not related to the movement of the Yangsan fault but to the tectonically inactive status like a shield area.

  • PDF

Face stability analysis of large-diameter underwater shield tunnel in soft-hard uneven strata under fluid-solid coupling

  • Shanglong Zhang;Xuansheng Cheng;Xinhai Zhou;Yue Sun
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.145-157
    • /
    • 2023
  • This paper aims at investigating the face stability of large-diameter underwater shield tunnels considering seepage in soft-hard uneven strata. Using the kinematic approach of limit upper-bound analysis, the analytical solution of limit supporting pressure on the tunnel face considering seepage was obtained based on a logarithmic spiral collapsed body in uneven strata. The stability analysis method of the excavation face with different soft- and hard-stratum ratios was explored and validated. Moreover, the effects of water level and burial depth on tunnel face stability were discussed. The results show the effect of seepage on the excavation face stability can be accounted as the seepage force on the excavation face and the seepage force of pore water in instability body. When the thickness ratio of hard soil layer within the excavation face exceeds 1/6D, the interface of the soft and hard soil layer can be placed at tunnel axis during stability analysis. The reliability of the analytical solution of the limit supporting pressure is validated by numerical method and literature methods. The increase of water level causes the instability of upper soft soil layer firstly due to the higher seepage force. With the rise of burial depth, the horizontal displacement of the upper soft soil decreases and the limit supporting pressure changes little because of soil arching effect.

A study on the soil conditioning behaviour according to mixing method in EPB shield TBM chamber (EPB 쉴드 TBM 챔버 내 혼합방법에 따른 배토상태거동에 대한 연구)

  • Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Cho, Sung-Woo;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.233-252
    • /
    • 2021
  • This paper is a study to improve the efficiency of mixing technology in the shield TBM chamber. Currently, the number of construction cases using the TBM method is increasing in Korea. According to the increasing use of TBM method, research on TBM method such as Disc Cutter, Cutter bit, and Segment also shows an increasing trend. However, there is little research on the mixing efficiency in chamber and chamber. In order to improve the smooth soil treatment and the behavior of the excavated soil, a study was conducted on the change of the mixing efficiency according to the effective mixing bar arrangement in the chamber. In the scale model experiment, the ground was composed using plastic materials of different colors for ease of identification. In addition, the mixing bar arrangement was different and classified into 4 cases, and the particle size distribution was classified into single particle size and multiple particle size, and the experiment was conducted with a total of 8 cases. The rotation speed of the cutter head of all cases was the same as 5 RPM, and the experiment time was also carried out in the same condition, 1 minute and 30 seconds. In order to check the mixing efficiency, samples at the upper, middle (left or right), and lower positions of each case were collected and analyzed. As a result of the scaled-down model experiment, the mixing efficiency of Case 4 and Case 4-1 increased compared to Case 1 and Case 1-1, which are actually used. Accordingly, it is expected that the mixing efficiency can be increased by changing the arrangement of the mixing bar in the chamber, and it is considered to be effective in saving air as the mixing efficiency increases. Therefore, this study is considered to be an important indicator for the use of shield TBM in Korea.

Shape Optimization of Active Shield Superconducting MRI Magnet (능동 차폐형 초전도 MRI 마그네트의 형상 최적화)

  • Jin, H.B.;Oh, B.H.;Ryu, K.S.;Song, J.T.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.210-212
    • /
    • 1996
  • A nonlinear optimization method for the shape optimization of actively shielded superconducting MRI magnet is presented. The presented design method can optimize both main coil and shielding coil simultaneously by setting constraints on stray field intensity at a specified distance from the magnet center. A 1 Tesla actively shielded superconducting MRI magnet, with 30cm bore diameter, is designed using the presented method.

  • PDF

Design of composite plate girders under shear loading

  • Shanmugam, N.E.;Baskar, K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2006
  • Experiments have been carried out on six composite and two plain steel plate girders under shear loading to understand the elastic and inelastic behaviour of such girders. The failure mechanism assumed and used to develop design equations is normally based on the failure patterns observed in the experiments. Therefore, different types of cracks and failure patterns observed in the experiments are reviewed briefly first. Based on the observed failure patterns, a design method to predict the ultimate shear capacity of composite plate girders is proposed in this paper. The values of ultimate shear capacity obtained using the proposed design method are compared with the corresponding experimental values and it is found that the proposed method is able to predict the shear capacity accurately.

Effect of Fabric Structure and Plating Method on EMI Shielding Property of Conductive Fabric (도전섬유의 전자파 차폐특성에 미치는 섬유구조 및 도금방법의 영향)

  • Kim, DongHyun;Lee, SeongJoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.149-157
    • /
    • 2015
  • We investigated the effects of the fabric structure or the kinds of plated metals on the electromagnetic interference shielding effectiveness (EMI SE) by means of electroless plating on polyester fabric. We found that the weight of deposited metal, EMI SE, and flexibility of the conductive fabric for EMI shield is affected by morphology of fabric and structure of fiber. The EMI SE of conductive fabric plated Ni/Cu/Ni by electroless plating method on draw textured yarn (DTY) polyester was in the practically useful range of above 70 dB over a wide frequency range of 10 MHz to 1.0 GHz at the surface resistivity of $0.05{\Omega}/{\square}$. Au or Ag plated conductive fabric by immersion plating method is not able to provide for a good EMI SE.

Thermal Crack Control of Wall Elements in LiNAC Structure (LiNAC실 벽체 구조물의 온도 균열 제어)

  • Son, Myong-Sik;Do, Yool-Ho;Na, Woon;Park, Chan-Kyu;Lee, Hoi-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • This paper presents the analytical results on the heat of hydration and induced thermal cracking of the wall elements in LiNAC that is a radioactive shield concrete structure. This wall elements measuring 1.2 m in thickness and 32 m in length tend to exhibit thermal cracking due to heat of hydration and high constraint effects caused by slab element located in the lower part of structure. In this analysis, four different construction stages were considered to find out the most effective concrete casting method in terms of thermal stress. Among the construction methods adopted in this analysis, the method of installation of construction connection measuring 1.2 m at the both side of wall elements was very effective way to control the thermal stress, resulting in increase thermal cracking index of wall elements in LiNAC structure. Finally, the wall elements in LiNAC structure was cast successfully according to the proposed construction method.

  • PDF

A design of actively shielded superconducting MRI magnet (능동차폐형 초전도 MRI 마그네트의 설계)

  • 진홍범;류강식;송준태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.24-29
    • /
    • 1996
  • Magnetic field theories for the design of highly homogeneous magnet are introduced and a nonlinear optimization method for the design of actively shielded superconducting magnet is presented. The presented design method can optimize both main coil and shielding coil simultaneously by setting constraints on stray field intensity at a specified distance from the magnet center. A 2-Tesla actively shielded superconducting magnet, with 90cm bore diameter, is designed using the presented method. The field homogeneity is 2ppm/30cm DSV and the 5 gauss stray field contour is within 4m axially and 3m radially from the magnet center. (author)., 7 refs., 6 figs., 3 tabs.

  • PDF