• Title/Summary/Keyword: Shield Method

Search Result 427, Processing Time 0.03 seconds

Study on the 3 dimensional numerical analysis method for shield TBM tunnel considering key factors (주요 영향요소를 고려한 쉴드TBM 터널 3차원 수치해석기법 연구)

  • Jun, Gy-chan;Kim, Dong-hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.513-525
    • /
    • 2018
  • A 3 dimensional numerical analysis for shield TBM tunnel should take into account various characteristics of the shield TBM excavation, such as gap, tail void, segment installation, and backfill injection. However, analysis method considering excavation characteristics are generally mixed with various method, resulting in concern of consistency and reliability degradation of the analytical results. In this paper, a parametric study is carried out by using actually measured ground settlement data on various methods that can be used for 3 dimensional numerical analysis of shield TBM tunneling. As a result, we have analyzed and arranged an analytical method to predict similarly the behavior of ground settlement and tunnel face pressure at the design stage. Skin plate pressure, backfill pressure and soil model have been identified as the most significant influences on the ground settlement. The grout pressure model is considered to be applicable when there is no volume loss information on the excavated ground, such as seabed tunnels, or when it is important to identify the behavior around a tunnel, such as surface settlement as well as face pressure. And it is considered that designers can use these guidelines as a base material to perform a reasonable 3 dimensional numerical analysis that reflects the ground conditions and the features of the shield TBM tunneling.

Study on the structure of the articulation jack and skin plate of the sharp curve section shield TBM in numerical analysis (수치해석을 통한 급곡선 구간 Shield TBM의 중절잭 및 스킨플레이트 구조에 관한 연구)

  • Kang, Sin-Hyun;Kim, Dong-Ho;Kim, Hun-Tae;Song, Seung-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.421-435
    • /
    • 2017
  • Recently, due to the saturation of ground structures and the overpopulation of pipeline facilities requires to development of underground structures as an alternative to ground structures. Thus, mechanized tunnel construction of the shield TBM method has been increasing in order to prevent vibration and noise problems in construction of the NATM tunnel for the urban infrastructure construction. Tunnel construction plan for the tunnel line should be formed in a sharp curve to avoid building foundation and underground structures and it is inevitable to develop a shield TBM technology that suits the sharp curve tunnel construction. Therefore, this study is about the structural stability technology of the articulation jack, shield jack and skin plate for the shield TBM thrust in case of the mechanized tunnel construction that is a straight and sharp curve line. The construction case study and shield TBM operation principle are examined and analyzed by the theoretical approach. The torque of the cutter head, the thrust of the articulation jack and the shield jack, the amount of over cutting for curve is important respectively in shield TBM construction of straight and sharp curve line. In addition, it is very important to secure the stability of the skin plate structure to ensure the safety of the inside worker. This study examines the general structure and construction of the equipment, experimental simulation was carried out through numerical analysis to examine the main factors and structural stability of the skin plate structure. The structural stability of the skin plate was evaluated and optimizes the shape by comparing the loads of the articulation jack by selecting the virtual soil to be applied in a straight and sharp curve line construction. Since the present structure and operation method of the shield TBM type in domestic constructions are very similar, this study will help to develop the localized shield TBM technology for the new equipment and the vulnerability and stability review.

Case study of volume loss estimation during slurry tbm tunnelling in weathered zone of granite rock (화강풍화대를 통과하는 슬러리 TBM의 체적손실 산정에 대한 사례 연구)

  • Park, Hyunku;Oh, Ju-Young;Chang, Seokbue;Lee, Seungbok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.61-74
    • /
    • 2016
  • This paper presents a case study on the ground settlement and volume loss estimation for slurry pressure balanced shield TBM tunnelling in weathered zone of granite rock. Settlement at each stage of shield tunnelling was analyzed and the volume losses and settlement trough factors were estimated from observations. In addition, using the existing volume loss evaluation method in literature, volume losses were estimated considering ground properties and actual driving parameters. Most of ground settlement occurred during passage of shield skin passage and after backfill grouting, and the measured total volume loss and trough curves appeared to coincide with literature. Shield and tail loss obtained from field measurement were found to be around 90% and 60% of the predictions, where tail loss indicated larger deviation than shield loss.

Performance comparison of machine learning classification methods for decision of disc cutter replacement of shield TBM (쉴드 TBM 디스크 커터 교체 유무 판단을 위한 머신러닝 분류기법 성능 비교)

  • Kim, Yunhee;Hong, Jiyeon;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.575-589
    • /
    • 2020
  • In recent years, Shield TBM construction has been continuously increasing in domestic tunnels. The main excavation tool in the shield TBM construction is a disc cutter which naturally wears during the excavation process and significantly degrades the excavation efficiency. Therefore, it is important to know the appropriate time of the disc cutter replacement. In this study, it is proposed a predictive model that can determine yes/no of disc cutter replacement using machine learning algorithm. To do this, the shield TBM machine data which is highly correlated to the disc cutter wears and the disc cutter replacement from the shield TBM field which is already constructed are used as the input data in the model. Also, the algorithms used in the study were the support vector machine, k-nearest neighbor algorithm, and decision tree algorithm are all classification methods used in machine learning. In order to construct an optimal predictive model and to evaluate the performance of the model, the classification performance evaluation index was compared and analyzed.

Stability analysis of shield tunnel segment lining by field measurement and full scale bending test (실대형 하중재하 시험 및 현장계측을 통한 쉴드터널 세그먼트 안정성 분석)

  • Lee, Gyu-Phil;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.611-620
    • /
    • 2019
  • The shield tunnel was mostly applied to cable tunnel with a diameter of 3~4 m, recently 7.8 m diameter shield tunnel was constructed in the lower section of the Incheon International Airport runway and is planning or under construction to roads and railway tunnels in the lower section of the Han River. Segments are also becoming larger as the shield tunnel cross-section increases, which causes a number of problems in the design, construction, and performance evaluation of segments. In this study, segment lining structural safety, criteria for serviceability check considering axial forces and quality control method for approximately 8 m in diameter shield tunnel were reviewed by field measurements and full scale bending test.

Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact

  • P.C. Jia;H. Wu;L.L. Ma;Q. Peng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4146-4158
    • /
    • 2022
  • Ultra-high performance concrete (UHPC) has been widely utilized in military and civil protective structures to resist intensive loadings attributed to its excellent properties, e.g., high tensile/compressive strength, high dynamic toughness and impact resistance. At present, aiming to improve the defects of the traditional vertical concrete cask (VCC), i.e., the external storage facility of spent fuel, with normal strength concrete (NSC) shield, e.g., heavy weight and difficult to fabricate/transform, the feasibility of UHPC applied in the shield of VCC is numerically examined considering its high radiation and corrosion resistance. Firstly, the finite element (FE) analyses approach and material model parameters of NSC and UHPC are verified based on the 1/3 scaled VCC tip-over test and drop hammer test on UHPC members, respectively. Then, the refined FE model of prototypical VCC is established and utilized to examine its dynamic behaviors and damage distribution in accidental tip-over and end-drop events, in which the various influential factors, e.g., UHPC shield thickness, concrete ground thickness, and sealing methods of steel container are considered. In conclusion, by quantitatively evaluating the safety of VCC in terms of the shield damage and vibrations, it is found that adopting the 300 mm-thick UHPC shield instead of the conventional 650 mm-thick NSC shield can reduce about 1/3 of the total weight of VCC, i.e., about 50 t, and 37% floor space, as well as guarantee the structural integrity of VCC during the accidental drop simultaneously. Besides, based on the parametric analyses, the thickness of concrete ground in the VCC storage site is recommended as less than 500 mm, and the welded connection is recommended for the sealing method of steel containers.

Effect of Different Budding Methods and Times on Grafting Success of Walnut

  • Nosrati, Zia;Khadivi-Khub, Abdollah
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.788-793
    • /
    • 2014
  • Vegetative propagation of walnut is difficult compared with that of other fruit and nut species. The present study assessed three methods of grafting (patch, shield, and chip) at various periods of walnut growth and with different timings of grafting in walnut. Early May was the best time for grafting, at which time the highest success rate was obtained by the patch method (96%), followed by chip-budding (75%), while shield-grafting showed the lowest efficiency (10%). Patch-grafting was also successful (75-80%) in early August and moderately successful in mid-June (51-55%), while the shield and chip methods had no success during these two times (0.00%). Patch-grafting was more efficient and also induced better callus formation and scion growth than the other two methods. The genotypes used did not affect grafting efficiency. The best results were obtained by patch-budding in both tested genotypes. The present findings show the potential value of patch-grafting in early May as a propagation method for walnut for establishment of guidelines for propagation.

Practical Silicon-Surface-Protection Method using Metal Layer

  • Yi, Kyungsuk;Park, Minsu;Kim, Seungjoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.470-480
    • /
    • 2016
  • The reversal of a silicon chip to find out its security structure is common and possible at the present time. Thanks to reversing, it is possible to use a probing attack to obtain useful information such as personal information or a cryptographic key. For this reason, security-related blocks such as DES (Data Encryption Standard), AES (Advanced Encryption Standard), and RSA (Rivest Shamir Adleman) engines should be located in the lower layer of the chip to guard against a probing attack; in this regard, the addition of a silicon-surface-protection layer onto the chip surface is a crucial protective measure. But, for manufacturers, the implementation of an additional silicon layer is burdensome, because the addition of just one layer to a chip significantly increases the overall production cost; furthermore, the chip size is increased due to the bulk of the secure logic part and routing area of the silicon protection layer. To resolve this issue, this paper proposes a practical silicon-surface-protection method using a metal layer that increases the security level of the chip while minimizing its size and cost. The proposed method uses a shift register for the alternation and variation of the metal-layer data, and the inter-connection area is removed to minimize the size and cost of the chip in a more extensive manner than related methods.

Scattering Bar Optical Proximity Correction to Suppress Overlap Error and Side-lobe in Semiconductor Lithography Process (Overlap Margin 확보 및 Side-lobe 억제를 위한 Scattering Bar Optical Proximity Correction)

  • 이흥주
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.1
    • /
    • pp.22-26
    • /
    • 2003
  • Overlap Errors and side-lobes have been simultaneously solved by the rule-based correction using the rules extracted from test patterns. Lithography process parameters affecting attPSM lithography process have been determined by the fitting method to the real process data. The correction using scattering bars has been compared to the Cr shield method. The optimal insertion rule of the scattering bal's has made it possible to suppress the side-lobes and to enhance DOF at the same time. Therefore, in this paper, the solution to both side-lobe and overlap Error has been proposed using rule-based confection. Compared to the existing Cr shield method, the proposed rule-based correction with scattering bars can reduce the process complexity and time for mask production.

  • PDF

Analysis on the behavior of shield TBM cable tunnel: The effect of the distance of backfill grout injection from the end of skin plate (뒷채움 주입 거리에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Ryu, Hee-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.213-224
    • /
    • 2014
  • Recently, tunnelling with TBM is getting popular for the construction of cable tunnel in urban area. Mechanized tunnelling method using shield TBM has various advantages such as minimization of ground settlement and prevention of vibration induced by blasting that should be accompanied by conventional tunnelling. In Korea, earth pressure balance (EPB) type shield TBM has been mainly used. Despite the popularity of EPB shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Especially, the effect of backfill grout injection on the behavior of cable tunnel driven by shield TBM is investigated in this study. Tunnelling with shield TBM is simulated using 3D FEM. The distance of backfill grout injection from the end of shield skin varies. Sectional forces such as axial force, shear force and bending moment are monitored. Vertical displacement at the ground surface is measured. Futhermore, the relation between volume loss and the distance of backfill grout injection from the end of skin plate is derived. Based on the stability analysis with the results obtained from the numerical analysis, the most appropriate injection distance can be obtained.