• Title/Summary/Keyword: Shield's parameter

Search Result 13, Processing Time 0.022 seconds

Optimization of 'Patterned Ground Shield' of Spiral Inductor using Taguchi's Method (다구찌 실험 계획법을 이용한 나선형 인덕터의 패턴드 그라운드 쉴드 최적 설계 연구)

  • Ko, Jae-Hyeong;Oh, Sang-Bae;Kim, Dong-Hun;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.436-439
    • /
    • 2007
  • This paper describes the optimization of PGS(Patterned Ground Shield) of 5.5 turns rectangular spiral inductor using Taguchi's method. PGS is decrease method of parasite component by silicon substrate among dielectric loss reduction method. By using the taguchi's method, each parameter is fixed upon that PGS high poison(A), slot spacing(B), strip width(C) and overlap turn number(D) of PGS design parameter. Then we verified that percentage contribution and design sensitivity analysis of each parameter and level by signal to noise ratio of larger-the-better type. We consider percentage contribution and design sensitivity of each parameter and level, and then verify that model of optimization for PGS is lower inductance decreasing ratio and higher Q-factor increasing ratio by EM simulation.

  • PDF

Analysis and Structural Behavior of Shield Tunnel Lining Segment (쉴드터널 라이닝 세그멘트의 해석과 거동 특성)

  • Lee, Hwan-Woo;Kim, Gwan-Soo;Kim, Gwang-Yang;Kang, Dae-Hui
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.757-762
    • /
    • 2007
  • The lining segment which is the main structure of the shield tunnel consists of joints, not continua. Past international and domestic design data have been commonly used for design practices without specific verification about the structural analysis model, design load, and affection of the soil constant of the lining segment. In this study, the propriety is estimated through the comparison between analytical solution and numerical solution for segment analysis and design models of the shield tunnel which is being used internationally and domestically. As a result, the full. circumferential beam jointed spring model (1R-S0) is suggested by considering aspects of convenient use, application to field condition, and accuracy of analysis result. With suggested model, the parameter analysis was conducted for joint stiffness, ground rigidity, joint distribution, and joint number.

  • PDF

Parameter Estimation of Quick Response Excitation type Superconducting Synchronous Generator by F.E.M (유한 요소법을 이용한 속응여자방식 초전도 발전기의 정수 산정)

  • Kim, J.C.;Hahn, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.600-602
    • /
    • 2000
  • This paper deals with finite element analysis of 2GVA superconducting generator which has slitted electrothermal shield in d-axis. Open emf voltage is calculated and three phase fault is considered to Predict the generator parameters by F.E.M. Results show that quick response excitation could be applied to superconducting generator with slitted electrothermal shield.

  • PDF

Development of simulation equipment system on EPB shield TBM hood operation (토압식 쉴드TBM의 후드부 시뮬레이션 장비 시스템 개발에 대한 연구)

  • Kim, Sang-Hwan;Oh, Tae-Sang;Park, Soo-Hwan;Lee, Choong-Yeoul;Park, Jong-Kwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • This paper presents the development of simulation system on EPB shield TBM Hood operation. In recent, EPB shield TBM is widely used in the tunnel construction. Since the hood system of the EPB shield TBM is most important to excavate the tunnel, it is necessary to perform the simulation of hood system to investigate the design and operation parameters prior to tunnel construction. In order to carry out this study, the scaled simulation system was designed and developed. The model tests were performed to verify the developed system. During the simulation, the earth pressures developed in the chamber during tunnelling were measured to evaluate the operation technique. The test results obtained by the developed simulation system show clearly the similar behaviour of TBM hood compared with the field data. It was also found that the ground loss during tunnelling is dependent on the change of earth pressure in chamber. Therefore, the simulation system developed in this study will be very useful to evaluate the operation technique of the TBM hood prior to tunnel construction. In addition, this system will be applied in a various condition of ground to get the operating information.

A Design of Low Noise RF _Front-End for Improvement Q-factor of Spiral Inductor Using Taguchi's Method (다구찌법을 이용한 나선형 인덕터의 Q-factor개선을 통한 Low Noise RF Front-End Design)

  • Choi, Jin-Kyu;Jung, Hyo-Bin;Ko, Jae-Hyeong;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • This article describes optimization for PGS(Patterned Ground Shield) of rectangular spiral inductor using Taguchi's Design of Experiment. PGS is decrease method of parasite component by silicon substrate among dielectric loss reduction method. Using taguchi's design of experiment, each parameter is fixed upon that PGS high poison(A), slot spacing(B), strip width(C) and overlap turn number(D) of PGS design parameter. Then we verified that percentage contribution and design sensitivity analysis of each parameter and level by signal to noise ratio of larger-the-better type. We consider percentage contribution and design sensitivity of each parameter and level, and then verify that model of optimization for PGS is lower inductance decreasing ratio and higher Q-factor increasing ratio by EM simulation.

  • PDF

Analysis of Electromagnetic Characteristics of a 1MW Class HTS Synchronous Motor (1MW급 고온초전도 동기기의 전자기적 특성 해석)

  • Baik, S.K.;Kwon, Y.K.;Lee, E.Y.;Lee, J.D.;Kim, Y.C.;Moon, T.S.;Park, H.J.;Kwon, W.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.32-36
    • /
    • 2007
  • On the contrary of a conventional motor with very narrow air-gap. it is difficult to calculate the accurate magnetic field distribution and the performance of an air-cored superconducting motor by 2 dimensional analysis. which does not use high permeability material except outer machine shield. This paper aims to do analysis of magnetic field and force distribution from the 3 dimensional modelling of a 1MW class superconducting synchronous motor. Especially. the field coil composed of Bi-2223 high-temperature superconductor and the outer machine shield are modelled by finite element analysis software according to their structures and the self-inductance and Lorentz force are calculated based on the 3 dimensional magnetic field calculation. Moreover. the influence of an important parameter, synchronous reactance, has been analyzed on the machine performances such as voltage variation and output power.

Analysis and structural behavior of shield tunnel lining segment (쉴드터널 라이닝 세그멘트의 해석과 거동 특성)

  • Jung, Du-Hwoe;Lee, Hwan-Woo;Kim, Gwan-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.37-47
    • /
    • 2007
  • The shield tunneling method has been increasingly employed to minimize environmental damages and civil complaints in the populated and developed area. A lining segment, which is a main structure of the shield tunnel, consists of joints. Conventional foreign and domestic design data have been commonly used for design practices without a specific verification of structural analysis models, design load, and the effect of soil characteristics on the performance of lining segment. In this study, the suitability of existing analytic models used for the design of shield tunnel lining segment has been evaluated through a comparison between analytical and numerical solutions. Based on the evaluation of their suitability performed in the study, a full-circumferential beam jointed spring model (1R-S0) is proposed for design practices by considering user's convenience, the applicability of field conditions and the accuracy of analysis result. By using the proposed model, the parameter analysis was performed to investigate the effects of joint stiffness, ground rigidity, joint distribution and the number of joints on the behavior of lining segment. Parameters considered in the investigation have been appeared to affect the behavior of lining segment. Among those parameters, joint stiffness has been appeared to have the most significant effect on the bending moment and displacement of lining segment.

  • PDF

Model for predicting ground surface settlement by field measuring and numerical analysis in shield TBM tunnel (현장계측과 수치해석에 의한 쉴드TBM 터널의 지표침하 예측모델)

  • Kim, Seung-Chul;Ahn, Sung-Youll;Lee, Song;Noh, Tae-Kil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.271-287
    • /
    • 2013
  • In this study, more convenient model(S-model) for predicting ground surface settlement is developed through comparing field monitoring data of the domestic subway applied shield TBM method with conventional equation & numerical analysis. Sample stations are chosen from whole of excavation section and lateral & vertical ground surface settlement characteristic with excavation are analysed. Based on analysis result, through the comparison with actual monitoring data, the model that is possible to compute maximum surface settlement and settlement influence area is suggested with assumption that lateral surface settlement forms are composed relaxed zone and elastic zone. In addition, vertical ground surface settlement patterns with excavation are similar to cubic-function and S-model with assumption that coefficients are function of tunnel diameter and depth is suggested. Consequently, the ground surface settlement patterns are significantly similar to actual monitoring data and numerical method result. Thus, as a result, when tunnels are excavated using sheild TBM through rather soft weathered soil & rock layer, prediction of ground surface settlement with excavation using convenient S-model is practicable.

Design of Ship Thruster and Seabed Scouring due to Effects of Water Velocity

  • Choi, Byoung-Yeol;Lee, Sang-Gil
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.102-111
    • /
    • 2017
  • This study considered the effects on the seabed of a harbor and quay wall from ship maneuvers in relation to the thruster jet flow and initial velocity. This study also included the engine capacity, RPM, and diameter and pitch of a ship's thruster for a required speed. The impact of a scour hole on the environment of a quay wall was investigated. Based on these results, a risk based analysis was conducted to evaluate different strategies and their consequences. There has been an increase in the loads on the bottom of a harbor during ship maneuvering. This increase is caused by the propeller loads of mooring and unmooring vessels. This indicates a greater number of arrivals and departures of vessels with larger drafts, larger thruster diameters, and larger available thruster power capacities. Another important cause could be an increase in the maneuverability of vessels from the use of bow thrusters. The increasing loads, which cause a higher jet flow above the bottom, can lead to undesirable scour holes.

Numerical Analysis of the Flow Field around Artificial Reefs (인공어초 주변의 흐름장에 관한 수치해석)

  • Jeong, Chil-Hoon;Kim, Heon-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.1
    • /
    • pp.31-38
    • /
    • 2007
  • This study investigated the fluid force acting on an artificial reef and the scour pattern at the bottom of the artificial reef in a steady-flow field using the finite difference method (Flow-3D). The structure was tetragonal in shape, like similar objects found in nature. The numerical analysis showed that the hydrodynamic characteristics and incipient scouring pattern matched natural phenomena. The velocity distribution around the tetragon was symmetric and wake occurred inside the tetragon and behind the bottom of the tetragon. The length of the recirculation flow behind the tetragon for each velocity was about 4-5 cm and the magnitude of the recirculation flow inside the tetragon generally increased with the Reynolds' number, although it decreased slightly for Reynolds' numbers from 11,000 to 12,000. In addition, the total fluid force acting on the tetragon increased with the inflow velocity, although the increment was smaller when the velocity exceed 18 cm/sec. The incipient pattern for the scouring of sediment matched the natural phenomenon.